A highly sensitive microsphere-based assay for early detection of Type I diabetes

August 12, 2014
A highly sensitive microsphere-based assay for early detection of Type I diabetes. Concept showing microsphere based detection of an Islet Cell Autoantibody (ICA) - Glutamic Acid Decarboxylase (GAD65) using Rolling Circle Amplification (RCA) on microspheres. Streptavidin-microspheres are conjugated with biotinylated-GAD65 followed by binding of GAD65Ab to microspheres. To these microspheres, biotin-GAD65 is added and coupled with bioyinylated DNA-primer via an avidin bridge. To the immobilized target primer, RCA circle is added followed by elongation using Phi 29 Polymerase and detection using SYBR Green II fluorescence.

A team of researchers from the Center for Engineering in Medicine at the Massachusetts General Hospital have developed a novel fluorescence-based assay for sensitive detection of antibodies within microliter volume serum samples. This new assay is at least 50 times more sensitive than the traditional radioimmunoassay (RIA), which is the gold standard currently used in the clinic.

This new technology is particularly attractive for immunological assays as it allows: 1) use of very small volumes of sample reagents (5 μL), and 2) use of traditional analytical systems such as a standard real time PCR requires much lower sample volumes than traditional ELISA methods allowing the modular bead-based assay to be modified for use in studies using small animal models, where the sample volume can be a limiting factor. The increased sensitivity of the assay could enable a more accurate determination of the onset of disease, as well as a better temporal resolution of disease progression. The report describing these results appears in the current issue of the journal Technology.

"This is a clever combination of the several existing techniques, the result of which is a more sensitive, non-radioactive, clinically-relevant assay," says Martin Yarmush, M.D., Ph.D., of the Massachusetts General Hospital and senior author on this paper. "It is our hope that this technique will become a useful tool for early detection of Islet Cell Autoantibodies (ICA) in at risk patients, which could lead to intervention before significant loss of islet cell mass".

"This method is partially built on the sensitivity of Rolling Circle Amplification (RCA), and we designed the assay to be modular so that it can be applied to any other antigen-antibody pair without the need for much modification. In the paper, we demonstrated superior detection capability of two different autoantibodies, but this is by no means the end of the story as the assay can be easily adapted to include as many autoantibodies as possible," says Shyam Sundhar Bale, Ph.D., the lead author on this paper. The team from the Massachusetts General Hospital plans to enhance this technology with a variety of engineering modifications, including multiplexing the assay for simultaneous detection of multiple antigens or antibodies within very small sample volumes.

Explore further: SERS-based assays a simple and convenient method to monitor glucose levels

More information: www.worldscientific.com/doi/abs/10.1142/S2339547814500174

Related Stories

New test detects toxic prions in blood

June 12, 2014

The first cases of Mad Cow disease in humans (properly called variant Creutzfeld Jakob Disease, or vCJD) occurred in the late 1990s and are thought to be the consequence of eating contaminated beef products. Since then, several ...

New microsphere-based methods for detecting HIV antibodies

May 23, 2013

Detection of HIV antibodies is used to diagnose HIV infection and monitor trials of experimental HIV/AIDS vaccines. New, more sensitive detection systems being developed use microspheres to capture HIV antibodies and can ...

Researchers find two new methods to determine ALK status

July 1, 2013

The implementation of personalized health care in cancer relies on the identification and characterization of cancer biomarkers and the availability of accurate detection systems and therapies for those biomarkers. Anaplastic ...

Recommended for you

Diabetes opens floodgates to fructose

October 11, 2016

Fructose, once seen as diabetics' alternative to glucose, is fast-tracked to the liver in diabetic mice and contributes to metabolic diseases, according to new research from Harvard University.

Type 2 diabetes and obesity—what do we really know?

October 6, 2016

Social and economic factors have led to a dramatic rise in type 2 diabetes and obesity around the world. In a review in Science, Mark McCarthy, professor at the University of Oxford, UK, and Paul Franks, professor at Lund ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.