New prosthetic arm controlled by neural messages

August 6, 2014

Controlling a prosthetic arm by just imagining a motion may be possible through the work of Mexican scientists at the Centre for Research and Advanced Studies (CINVESTAV), who work in the development of an arm replacement to identify movement patterns from brain signals.

First, it is necessary to know if there is a memory pattern to remember in the amputee's in order to know how it moved and, thus, translating it to instructions for the prosthesis," says Roberto Muñoz Guerrero, researcher at the Department of Electrical Engineering and project leader at Cinvestav.

He explains that the electric signal won't come from the muscles that form the stump, but from the of the brain. "If this phase is successful, the patient would be able to move the prosthesis by imagining different movements."

However, Muñoz Guerrero acknowledges this is not an easy task because the brain registers a wide range of activities that occur in the human body and from all of them, the movement pattern is tried to be drawn. "Therefore, the first step is to recall the patterns in the EEG and define there the memory that can be electrically recorded. Then we need to evaluate how sensitive the signal is to other external shocks, such as light or blinking."

Regarding this, it should be noted that the prosthesis could only be used by individuals who once had their entire arm and was amputated because some accident or illness. Patients were able to move the arm naturally and stored in their memory the process that would apply for the use of the prosthesis.

According to the researcher, the prosthesis must be provided with a mechanical and electronic system, the elements necessary to activate it and a section that would interpret the . "Regarding the material with which it must be built, it has not yet been fully defined because it must weigh between two and three kilograms, which is similar to the missing arm's weight."

The unique prosthesis represents a new topic in bioelectronics called BCI (Brain Computer Interface), which is a direct communication pathway between the brain and an external device in order to help or repair sensory and motor functions. "An additional benefit is the ability to create motion paths for the , which is not possible with commercial products," says Muñoz Guerrero.

Explore further: Advanced prosthetic arm is approved for US market

Related Stories

Researchers develop ultramodern forearm prosthesis

February 12, 2014

Researchers of the University of Twente (UT) and Roessingh Research and Development (RRD) have developed a system which can significantly improve the functionality of forearm prostheses. Using the activity still present in ...

The quest for the bionic arm

June 3, 2014

In the past 13 years, nearly 2,000 veterans returned from Iraq and Afghanistan with injuries requiring amputations; 14 percent of those injured veterans required upper extremity amputations. To treat veterans with upper extremity ...

Recommended for you

Rat brain atlas provides MR images for stereotaxic surgery

October 21, 2016

Boris Odintsov, senior research scientist at the Biomedical Imaging Center at the Beckman Institute for Advanced Science and Technology at the University of Illinois in Urbana-Champaign, and Thomas Brozoski, research professor ...

Imaging technique maps serotonin activity in living brains

October 20, 2016

Serotonin is a neurotransmitter that's partly responsible for feelings of happiness and for mood regulation in humans. This makes it a common target for antidepressants, which block serotonin from being reabsorbed by neurons ...

Overcoming egocentricity increases self-control

October 19, 2016

Neurobiological models of self-control usually focus on brain mechanisms involved in impulse control and emotion regulation. Recent research at the University of Zurich shows that the mechanism for overcoming egocentricity ...

Exercise may help ward off memory decline

October 19, 2016

Exercise may be associated with a small benefit for elderly people who already have memory and thinking problems, according to new research published in the October 19, 2016, online issue of Neurology, a medical journal of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.