Scientists map the pulse pressure and elasticity of arteries in the brain

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can noninvasively image the pulse pressure and elasticity of the arteries of the brain, revealing correlations between arterial health and aging.

Brain artery support, which makes up the cerebrovascular system, is crucial for healthy aging and preventing diseases like Alzheimer's and other forms of dementia.

The researchers, led by Monica Fabiani and Gabriele Gratton, psychology professors at the Beckman Institute, routinely record optical imaging data by shining near-infrared light into the brain to measure neural activity. Their idea to measure pulse pressure through optical imaging came from observing in previous studies that the arterial pulse produced strong signals in the optical data, which they normally do not use to study brain function. Realizing the value in this overlooked data, they launched a new study that focused on data from 53 participants aged 55-87 years.

"When we image the brain using our optical methods, we usually remove the pulse as an artifact—we take it out in order to get to other signals from the brain," said Fabiani. "But we are interested in aging and how the brain changes with other bodily systems, like the cardiovascular system. When thinking about this, we realized it would be useful to measure the cerebrovascular system as we worry about cognition and brain physiology."

The initial results using this new technique find that arterial stiffness is directly correlated with cardiorespiratory fitness: the more fit people are, the more elastic their arteries. Because arterial stiffening is a cause of reduced , stiff arteries can lead to a faster rate of cognitive decline and an increased chance of stroke, especially in older adults.

Using this method, the researchers were able to collect additional, region-specific data.

"In particular, noninvasive optical methods can provide estimates of arterial elasticity and brain in different regions of the brain, which can give us clues about the how different regions of the brain contribute to our overall health," said Gratton. "For example, if we found that a particular artery was stiff and causing decreased blood flow to and loss of brain cells in a specific area, we might find that the damage to this area is also associated with an increased likelihood of certain psychological and cognitive issues."

The researchers are investigating ways to use this technique to measure arterial stiffness across different age groups and specific cardiovascular or stress levels. High levels of stress, especially over a long amount of time, may affect arterial health, according to the researchers.

"This is just the beginning of what we're able to explore with this technique. We're looking at other age groups, and in the future we intend to study people with varying levels of long-term stress," said Fabiani. "When people are stressed for long periods of time, like if they're caring for a sick parent, stress might generate vasoconstriction and higher blood pressure, with significant consequences for arterial function in the brain. We are interested in knowing whether this may be an important factor leading to arterial stiffness."

The researchers are also able to gather information about pulse transit time, or how long it takes the blood to flow through the brain's arteries, and visualize large arteries running along the brain surface.

"Our goal is to find more information about what causes arterial stiffness, and how regional can lead to specific health problems. Our findings continue to bolster the idea that an important key to aging well is having good cerebrovascular health," said Fabiani.

More information: The technique and findings are detailed in an article published in the journal Psychophysiology. onlinelibrary.wiley.com/doi/10… /psyp.12288/abstract

add to favorites email to friend print save as pdf

Related Stories

In elderly, hardening of arteries linked to plaques in brain

Oct 16, 2013

Even for elderly people with no signs of dementia, those with hardening of the arteries are more likely to also have the beta-amyloid plaques in the brain that are a hallmark of Alzheimer's disease, according to a study published ...

Recommended for you

Results of RIBS IV trial reported

15 hours ago

A new clinical trial comparing the use of everolimus-eluting stents (EES) and drug-eluting balloons (DEB) in treating in-stent restenosis (ISR) from drug-eluting stents found that EES provided superior late angiographic results ...

Results of DKCRUSH-VI trial reported

15 hours ago

A new study found that fractional flow reserve (FFR)-guided provisional side branch (SB) stenting of true coronary bifurcation lesions yields similar outcomes to the current standard of care. The DKCRUSH-VI clinical trial ...

Results of IVUS-CTO trial reported at TCT 2014

16 hours ago

A new study found that intravascular ultrasound (IVUS) -guided intervention in patients with chronic total occlusion (CTO) could improve outcomes compared to a conventional angiography-guided approach during percutaneous ...

Results of OCT STEMI trial reported at TCT 2014

16 hours ago

The first randomized trial to examine serial optical coherence tomography (OCT) in primary percutaneous coronary intervention (PCI) was reported at the 26th annual Transcatheter Cardiovascular Therapeutics (TCT) scientific ...

INR variability predicts warfarin adverse effects

21 hours ago

(HealthDay)—Unstable anticoagulation predicts warfarin adverse effects regardless of time in therapeutic range, according to a study published online Sept. 2 in Circulation: Cardiovascular Quality and Ou ...

User comments