Wii Balance Board induces changes in the brains of MS patients

This flowchart shows the study protocol. Credit: Radiological Society of North America

A balance board accessory for a popular video game console can help people with multiple sclerosis (MS) reduce their risk of accidental falls, according to new research published online in the journal Radiology. Magnetic resonance imaging (MRI) scans showed that use of the Nintendo Wii Balance Board system appears to induce favorable changes in brain connections associated with balance and movement.

Balance impairment is one of the most common and disabling symptoms of MS, a disease of the in which the body's immune system attacks the protective sheath around nerve fibers. Physical rehabilitation is often used to preserve balance, and one of the more promising new tools is the Wii Balance Board System, a battery-powered device about the size and shape of a bathroom scale. Users stand on the board and shift their weight as they follow the action on the television screen during games like slalom skiing.

While Wii balance board rehabilitation has been reported as effective in patients with MS, little is known about the underlying physiological basis for any improvements in balance.

Researchers recently used an MRI technique called (DTI) to study changes in the brains of 27 MS patients who underwent a 12-week intervention using Wii balance board-based visual feedback training. DTI is a non-conventional MRI technique that allows detailed analysis of the white matter tracts that transmit nervous signals through the brain and body.

The figure shows the starting point (in red, left image), the ending point (in yellow, center image) and the three dimensional rendering (in green, right image) of the nerve tracts examined in the study. Credit: Radiological Society of North America

MRI scans of the MS patients showed significant effects in nerve tracts that are important in balance and movement. The changes seen on MRI correlated with improvements in balance as measured by an assessment technique called posturography.

These brain changes in MS patients are likely a manifestation of neural plasticity, or the ability of the brain to adapt and form new connections throughout life, according to lead author Luca Prosperini, M.D., Ph.D., from Sapienza University in Rome, Italy.

"The most important finding in this study is that a task-oriented and repetitive training aimed at managing a specific symptom is highly effective and induces ," he said. "More specifically, the improvements promoted by the Wii can reduce the risk of accidental falls in patients with MS, thereby reducing the risk of fall-related comorbidities like trauma and fractures."

Dr. Prosperini noted that similar plasticity has been described in persons who play video games, but the exact mechanisms behind the phenomenon are still unknown. He hypothesized that changes can occur at the cellular level within the brain and may be related to myelination, the process of building the protective sheath around the nerves.

This flowchart shows subject selection. Credit: Radiological Society of North America

The rehabilitation-induced improvements did not persist after the patients discontinued the training protocol, Dr. Prosperini said, most likely because certain skills related to structural changes to the after an injury need to be maintained through training.

"This finding should have an important impact on the rehabilitation process of patients, suggesting that they need ongoing exercises to maintain good performance in daily living activities," Dr. Prosperini said.

More information: "Multiple Sclerosis: Changes in Microarchitecture of White Matter Tracts after Training with a Video Game Balance Board." Radiology, 2014.

add to favorites email to friend print save as pdf

Related Stories

Imaging scientists develop a better tool for tracking MS

May 27, 2014

Imaging scientists at Western University's Robarts Research Institute (London, Canada) have developed a better way to track the progression of Multiple Sclerosis (MS) from its earliest stages. Led by Ravi ...

MRI findings shed light on multiple sclerosis

Aug 21, 2012

New magnetic resonance imaging (MRI) research shows that changes in brain blood flow associated with vein abnormalities are not specific for multiple sclerosis (MS) and do not contribute to its severity, despite what some ...

Recommended for you

Emotional adjustment following traumatic brain injury

Oct 24, 2014

Life after a traumatic brain injury resulting from a car accident, a bad fall or a neurodegenerative disease changes a person forever. But the injury doesn't solely affect the survivor – the lives of their spouse or partner ...

New ALS associated gene identified using innovative strategy

Oct 22, 2014

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

User comments