Self-assembling biomaterial forms nanostructure templates for human tissue formation

Self-assembling biomaterial forms nanostructure templates for human tissue formation
Credit: Mary Ann Liebert, Inc., Publishers

Unlike scaffold-based methods to engineer human tissues for regenerative medicine applications, an innovative synthetic material with the ability to self-assemble into nanostructures to support tissue growth and ultimately degrade offers a promising new approach to deliver cell and tissue therapies. The unique properties of this biofunctional coating that enable it to stimulate and direct the formation of complex tissues are described in an article in Tissue Engineering, Part A.

In "New Self-Assembling Multifunctional Templates for the Biofabrication and Controlled Self-Release of Cultured Tissue ", Ricardo Gouveia, Valeria Castelletto, Ian Hamley and Che Connon, University of Reading Whiteknights Campus, Reading, and Newcastle University, Newcastle upon Tyne, U.K., discuss how a novel synthetic material comprised of peptide amphiphile molecules is able to form a bioactive coating that interacts with cells in the surrounding environment and initiates a signaling cascade resulting in the formation of complex three-dimensional tissue structures that are then released from the coating.

"This article describes investigations towards the development of innovative biomaterials able to direct the formation of complex tissues as well as their release from the biomaterial template with enormous implications in and ," says Co-Editor-in-Chief Antonios Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX.

More information: The article is available free on the Tissue Engineering website.

Citation: Self-assembling biomaterial forms nanostructure templates for human tissue formation (2015, April 27) retrieved 19 March 2024 from https://medicalxpress.com/news/2015-04-self-assembling-biomaterial-nanostructure-templates-human.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New device enables 3D tissue engineering with multicellular building blocks

4 shares

Feedback to editors