Study finds only a small portion of synapses may be active during neurotransmission

February 25, 2016
Study finds only a small portion of synapses may be active during neurotransmission
Credit: Sulzer lab/Columbia University Medical Center

Columbia University scientists have developed a new optical technique to study how information is transmitted in the brains of mice. Using this method, they found that only a small portion of synapses—the connections between cells that control brain activity—may be active at any given time.

The study was published in the latest issue of Nature Neuroscience.

"Understanding how we accomplish complex tasks, such as learning and memory, requires us to look at how our brains transmit key signals—called neurotransmitters—across synapses from one neuron to another," said David Sulzer, PhD, professor of neurobiology in Psychiatry, Neurology, and Pharmacology at Columbia University Medical Center (CUMC). "Older techniques only revealed what was going on in large groups of synapses. We needed a way to observe the neurotransmitter activity of individual synapses, to help us better understand their intricate behavior."

To obtain a detailed view of synaptic activity, Sulzer's team collaborated with the laboratory of Dalibor Sames, PhD, associate professor of chemistry at Columbia, to develop a novel compound called fluorescent false neurotransmitter 200 (FFN200). When added to brain tissue or nerve cells from mice, FFN200 mimics the brain's natural neurotransmitters and allows researchers to spy on chemical messaging in action.

Only 20% of synapses (red) were observed to transmit dopamine. The rest (green) were found to be silent. Credit: Sulzer Lab/Columbia University Medical Center

Using a fluorescence microscope, the researchers were able to view the release and reuptake of dopamine—a neurotransmitter involved in motor learning, habit formation, and reward-seeking behavior—in individual synapses. When all the neurons were electrically stimulated in a sample of , the researchers expected all the synapses to release dopamine. Instead, they found that less than 20 percent of dopaminergic synapses were active following a pulse of electricity.

The video will load shortly
Columbia University scientists have developed a new optical technique to study how information is transmitted in the brains of mice. Using this method, they found that only a small portion of synapses -- the connections between cells that control brain activity -- may be active at any given time. Credit: Columbia University Medical Center

"Why are there these large reservoirs of synapses that are silent?" said Dr. Sames, a co-author of the paper. "Perhaps these silent terminals hint at a mechanism of information coding in the brain that's yet to be revealed."

The study's authors plan to pursue this hypothesis in future experiments, as well as examine how other neurotransmitters behave.

"This particular study didn't explain what's causing most of the to remain silent," said Dr. Sulzer. "If we can work this out, we may learn a lot more about how alterations in dopamine levels are involved in disorders such as Parkinson's disease, addiction, and schizophrenia."

Explore further: Scientists find brain plasticity assorted into functional networks

More information: Daniela B Pereira et al. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum, Nature Neuroscience (2016). DOI: 10.1038/nn.4252

Related Stories

Children with autism have extra synapses in brain

August 21, 2014

Children and adolescents with autism have a surplus of synapses in the brain, and this excess is due to a slowdown in a normal brain "pruning" process during development, according to a study by neuroscientists at Columbia ...

Recommended for you

Autism-linked protein crucial for feeling pain

December 1, 2016

Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively—for example, pulling their hair or banging their heads—because they're less sensitive to pain than ...

Study provides neuronal mechanism for the benefits of fasting

December 1, 2016

A study from the Buck Institute offers for the first time an explanation for the benefits of fasting at the neuronal level, providing a possible mechanism for how fasting can afford health benefits. Publishing on December ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.