Medical research

Findings may help close door on COVID-19

Researchers at Vanderbilt University Medical Center (VUMC) and the University of Texas Medical Branch (UTMB) at Galveston have discovered what may be the Achilles' heel of the coronavirus, a finding that may help close the ...

Diseases, Conditions, Syndromes

Why the coronavirus and most other viruses have no cure

People hospitalized with severe symptoms from the coronavirus are given medicine to bring down the fever and fluids to keep them hydrated, generally by intravenous tube. Some patients are connected to a ventilator: a mechanical ...

Immunology

Compound found to trigger innate immunity against viruses

Research from UW Medicine and collaborators indicates that a drug-like molecule can activate innate immunity and induce genes to control infection in a range of RNA viruses, including West Nile, dengue, hepatitis C, influenza ...

Diseases, Conditions, Syndromes

Two drugs show promise against COVID-19

Korean researchers have screened 48 FDA-approved drugs against SARS-CoV-2, and found that two, that are already FDA-approved for other illnesses, seem promising. The FDA approval for other uses would greatly reduce the time ...

Diseases, Conditions, Syndromes

Inside the hepatitis C virus is a promising antiviral

A peptide derived from the hepatitis C virus (HCV) kills a broad range of viruses while leaving host cells unharmed by discriminating between the molecular make-up of their membranes, reveals a study published January 5 in ...

page 1 from 37

Antiviral drug

Antiviral drugs are a class of medication used specifically for treating viral infections. Like antibiotics for bacteria, specific antivirals are used for specific viruses. Unlike antibiotics, antiviral drugs do not destroy their target pathogen but inhibit their development.

Antiviral drugs are one class of antimicrobials, a larger group which also includes antibiotic, antifungal and antiparasitic drugs. They are relatively harmless to the host, and therefore can be used to treat infections. They should be distinguished from viricides, which are not medication but destroy virus particles outside the body.

Most of the antivirals now available are designed to help deal with HIV, herpes viruses (best known for causing cold sores and genital herpes, but actually causing a wide range of diseases), the hepatitis B and C viruses, which can cause liver cancer, and influenza A and B viruses. Researchers are working to extend the range of antivirals to other families of pathogens.

Designing safe and effective antiviral drugs is difficult, because viruses use the host's cells to replicate. This makes it difficult to find targets for the drug that would interfere with the virus without harming the host organism's cells.

The emergence of antivirals is the product of a greatly expanded knowledge of the genetic and molecular function of organisms, allowing biomedical researchers to understand the structure and function of viruses, major advances in the techniques for finding new drugs, and the intense pressure placed on the medical profession to deal with the human immunodeficiency virus (HIV), the cause of the deadly acquired immunodeficiency syndrome (AIDS) pandemic.

Almost all anti-microbials, including anti-virals, are subject to drug resistance as the pathogens mutate over time, becoming less susceptible to the treatment. For instance, a recent study published in Nature Biotechnology emphasized the urgent need for augmentation of oseltamivir (Tamiflu) stockpiles with additional antiviral drugs including zanamivir (Relenza) based on an evaluation of the performance of these drugs in the scenario that the 2009 H1N1 'Swine Flu' neuraminidase (NA) were to acquire the tamiflu-resistance (His274Tyr) mutation which is currently wide-spread in seasonal H1N1 strains.

This text uses material from Wikipedia, licensed under CC BY-SA