News tagged with cerebral cortex

Related topics: brain , neurons , magnetic resonance imaging , brain cells , nerve cells

Repairing the cerebral cortex: It can be done

A team led by Afsaneh Gaillard (Inserm Unit 1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers), in collaboration with the Institute of Interdisciplinary Research in Human and ...

Mar 11, 2015
popularity 18 comments 0

New brain mapping reveals unknown cell types

Using a process known as single cell sequencing, scientists at Karolinska Institutet have produced a detailed map of cortical cell types and the genes active within them. The study, which is published in ...

Feb 19, 2015
popularity 340 comments 2

'Chatty' cells help build the brain

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

Nov 28, 2014
popularity 0 comments 0

Cerebral cortex

The cerebral cortex is a structure within the brain that plays a key role in memory, attention, perceptual awareness, thought, language, and consciousness. It constitutes the outermost layer of the cerebrum. In preserved brains, it has a grey color, hence the name "grey matter". Grey matter is formed by neurons and their unmyelinated fibers, whereas the white matter below the grey matter of the cortex is formed predominantly by myelinated axons interconnecting different regions of the central nervous system. The human cerebral cortex is 2–4 mm (0.08–0.16 inches) thick.

The surface of the cerebral cortex is folded in large mammals, such that more than two-thirds of the cortical surface is buried in the grooves, called "sulci." The phylogenetically most recent part of the cerebral cortex, the neocortex, also called isocortex, is differentiated into six horizontal layers; the more ancient part of the cerebral cortex, the hippocampus (also called archicortex), has at most three cellular layers, and is divided into subfields. Relative variations in thickness or cell type (among other parameters) allow us to distinguish between different neocortical architectonic fields. The geometry of at least some of these fields seems to be related to the anatomy of the cortical folds, and, for example, layers in the upper part of the cortical ridges (called gyri) seem to be more clearly differentiated than in its deeper parts.

This text uses material from Wikipedia licensed under CC BY-SA