News tagged with genetic code

Related topics: genome , genes , protein , genetic variation , dna

Mutations that matter

(Medical Xpress)—Identifying the genetic source of a specific trait can be a little like finding a needle in a field full of haystacks. University of Dayton biologist Thomas Williams is working to shrink the number of haystacks.

Sep 27, 2013
popularity not rated yet | comments 0 | with audio podcast

Researchers tease apart workings of a common gene

Researchers at Weill Cornell Medical College have discovered why a tiny alteration in a brain gene, found in 20 percent of the population, contributes to the risk for anxiety, depression and memory loss.

Sep 19, 2013
popularity 5 / 5 (3) | comments 0 | with audio podcast

Shining light on neurodegenerative pathway

University of Adelaide researchers have identified a likely molecular pathway that causes a group of untreatable neurodegenerative diseases, including Huntington's disease and Lou Gehrig's disease.

Sep 18, 2013
popularity not rated yet | comments 0 | with audio podcast

Genetic code

The genetic code is the set of rules by which information encoded in genetic material (DNA or RNA sequences) is translated into proteins (amino acid sequences) by living cells. The code defines a mapping between tri-nucleotide sequences, called codons, and amino acids. A triplet codon in a nucleic acid sequence usually specifies a single amino acid (though in some cases the same codon triplet in different locations can code unambiguously for two different amino acids, the correct choice at each location being determined by context). Because the vast majority of genes are encoded with exactly the same code (see the RNA codon table), this particular code is often referred to as the canonical or standard genetic code, or simply the genetic code, though in fact there are many variant codes. Thus the canonical genetic code is not universal. For example, in humans, protein synthesis in mitochondria relies on a genetic code that varies from the canonical code.

It is important to know that not all genetic information is stored using the genetic code. All organisms' DNA contain regulatory sequences, intergenic segments, and chromosomal structural areas that can contribute greatly to phenotype but operate using distinct sets of rules that may or may not be as straightforward as the codon-to-amino acid paradigm that usually underlies the genetic code (see epigenetics).

This text uses material from Wikipedia licensed under CC BY-SA