Medical research

Compound made inside human body stops viruses from replicating

The newest antiviral drugs could take advantage of a compound made not by humans, but inside them. A team of researchers has identified the mode of action of viperin, a naturally occurring enzyme in humans and other mammals ...

Genetics

Genomic architecture presages genomic instability: study

When cells divide normally, DNA gets copied perfectly and distributed among the daughter cells with an even hand. Occasionally though, DNA breaks during division and is rearranged, resulting in duplications or deletions of ...

Diseases, Conditions, Syndromes

Earliest known evidence of 1918 influenza pandemic found

Examination of lung tissue and other autopsy material from 68 American soldiers who died of respiratory infections in 1918 has revealed that the influenza virus that eventually killed 50 million people worldwide was circulating ...

Genetics

World's most advanced genetic map created

A consortium led by scientists at the University of Oxford and Harvard Medical School has constructed the world's most detailed genetic map.

Medications

How a novel drug pushes the HIV capsid to breaking point

Just over a year ago, the European Union and the US Food and Drug Administration approved a new anti-retroviral drug to treat human immunodeficiency virus (HIV) infections. Lenacapavir is the first drug available to patients ...

page 1 from 40

Gene

A gene is the basic unit of heredity in a living organism. All living things depend on genes. Genes hold the information to build and maintain their cells and pass genetic traits to offspring. A modern working definition of a gene is "a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions, and or other functional sequence regions " . In common usage, the term gene often refers to what is known more accurately as an allele.

The notion of a gene has evolved with the science of genetics, which began when Gregor Mendel noticed that biological variations are inherited from parent organisms as specific, discrete traits. The biological entity responsible for defining traits was termed a gene, but the biological basis for inheritance remained unknown until DNA was identified as the genetic material in the 1940s. All organisms have many genes corresponding to many different biological traits, some of which are immediately visible, such as eye color or number of limbs, and some of which are not, such as blood type or increased risk for specific diseases, or the thousands of basic biochemical processes that comprise life.

In cells, a gene is a portion of DNA that contains both "coding" sequences that determine what the gene does, and "non-coding" sequences that determine when the gene is active (expressed). When a gene is active, the coding and non-coding sequences are copied in a process called transcription, producing an RNA copy of the gene's information. This piece of RNA can then direct the synthesis of proteins via the genetic code. In other cases, the RNA is used directly, for example as part of the ribosome. The molecules resulting from gene expression, whether RNA or protein, are known as gene products, and are responsible for the development and functioning of all living things.

In more technical terms, a gene is a locatable region of genomic sequence, corresponding to a unit of inheritance, and is associated with regulatory regions, transcribed regions and/or other functional sequence regions. The physical development and phenotype of organisms can be thought of as a product of genes interacting with each other and with the environment. A concise definition of a gene, taking into account complex patterns of regulation and transcription, genic conservation and non-coding RNA genes, has been proposed by Gerstein et al.: "A gene is a union of genomic sequences encoding a coherent set of potentially overlapping functional products".

This text uses material from Wikipedia, licensed under CC BY-SA