News tagged with glycolysis

Related topics: cancer cells

Molecule prevents fat combustion

ETH Zurich researchers have found a new role for a well-known signalling molecule, Hif1: the molecule suppresses the burning of fat, which may possibly promote obesity in humans.

Feb 14, 2012
popularity0 comments 1

Feed a cold -- starve a tumor

The condition tuberous sclerosis, due to mutation in one of two tumor suppressor genes, TSC1 or TSC2, causes the growth of non-malignant tumors throughout the body and skin. These tumors can be unsightly and cause serious ...

Oct 21, 2011
popularity0 comments 0

Glycolysis

Glycolysis (from glycose, an older term for glucose + -lysis degradation) is the metabolic pathway that converts glucose C6H12O6, into pyruvate, CH3COCOO− + H+. The free energy released in this process is used to form the high-energy compounds ATP (adenosine triphosphate) and NADH (reduced nicotinamide adenine dinucleotide).

Glycolysis is a definite sequence of ten reactions involving ten intermediate compounds (one of the steps involves two intermediates). The intermediates provide entry points to glycolysis. For example, most monosaccharides, such as fructose, glucose, and galactose, can be converted to one of these intermediates. The intermediates may also be directly useful. For example, the intermediate dihydroxyacetone phosphate (DHAP) is a source of the glycerol that combines with fatty acids to form fat.

It occurs, with variations, in nearly all organisms, both aerobic and anaerobic. The wide occurrence of glycolysis indicates that it is one of the most ancient known metabolic pathways.

The most common type of glycolysis is the Embden-Meyerhof-Parnas pathway (EMP pathway), which was first discovered by Gustav Embden, Otto Meyerhof and Jakub Karol Parnas. Glycolysis also refers to other pathways, such as the Entner–Doudoroff pathway and various heterofermentative and homofermentative pathways. However, the discussion here will be limited to the Embden-Meyerhof pathway.

The entire glycolysis pathway can be separated into two phases:

This text uses material from Wikipedia, licensed under CC BY-SA

Subscribe to rss feed