Bottleneck in blood supply makes brain vulnerable to strokes

January 4, 2007

A team of University of California, San Diego physicists and neuroscientists has discovered a bottleneck in the network of blood vessels in the brain that makes it vulnerable to strokes. The finding may explain the origin of the puzzling damage to the brain's gray matter often detected in brain scans, especially among the elderly.

In the study, published this week in the journal Proceedings of the National Academy of Sciences, the researchers used a laser technique they developed to precisely monitor changes in blood flow resulting from an induced blockage in a tiny artery, or arteriole, in the brains of anesthetized rats. They found that the penetrating arterioles, which connect the blood vessels on the brain's surface with deeper blood vessels, are a vulnerable link in the network.

"The blood vessels on the surface of the brain are like a collection of city streets that provide multiple paths to get somewhere," explained David Kleinfeld, a professor of physics at UCSD, who led the team. "If one of the vessels is blocked, blood flow quickly rearranges itself. On the other hand, the penetrating arterioles are more like freeways. When blocked, the blood flow is stopped or slowed significantly in a large region round the clot."

The obstruction of blood flow resulted in damage to the surrounding brain area, which the researchers report resembled damage seen in the brains of humans and thought to be the result of "silent strokes." Silent strokes have attracted attention recently because magnetic resonance imaging has made it possible to follow changes in the brains of individuals as they age. MRI scans have revealed that, over time, small holes accumulate in the gray matter of many patients, including those who have no obvious behavioral signs of a stroke.

The researchers say their results support the hypothesis, made by clinicians, that the penetrating arterioles may be the location of small strokes that cause the death of sections of brain tissue in humans. The accumulation of damage may lead to memory loss, and may be a risk factor for having a larger stroke, according to Pat Lyden, a professor of neurosciences at UCSD's School of Medicine and head of the UCSD Stroke Center.

"This damage is an enormous problem," said Lyden, who collaborated with Kleinfeld on the study. "We think it is part of the dementia picture in Alzheimer's and non-Alzheimer's patients. But until now, we had no insight into the mechanism of the damage, and understanding the mechanism is the first step toward understanding how to prevent it."

To determine what happens in the brain during a stroke, the researchers created a tiny clot in a blood vessel in the brain of an anesthetized rat. They used focused laser light to excite a dye they had injected into the bloodstream. A chemical reaction of the excited dye "nicked" the blood vessel at the target location and triggered the natural clotting response.

"The technique creates a clot while generating very little collateral damage," said Beth Friedman, an associate project scientist working with Lyden in neurosciences and a contributing author on the paper. "Then we can study blood flow changes to understand what is happening in the brain in real time."

Before and after the formation of the clot, the researchers tracked the movements of red blood cells using two-photon fluorescence microscopy. Two-photon fluorescence microscopy is a powerful imaging tool that uses brief (less than one-trillionth of a second) laser pulses to peer below the surface of the brain.

In contrast to a previous study, in which the team showed there was very little disruption in blood flow when a clot formed in the blood vessels on the surface of the brain, a blockage in the penetrating arterioles had a significant effect. The flow of red blood cells was reduced far downstream of the blockage. Because blood flow cannot simply take alternate routes to compensate for the blockage, the penetrating arterioles are a bottleneck in the blood supply to gray matter.

"In this study, we took advantage of being able to see into individual capillaries in brain tissue," explained Nozomi Nishimura, who was a graduate student working with Kleinfeld in physics at the time of the study. "It is the capillaries, the smallest blood vessels, that provide the brain cells with oxygen and nutrients. So we were able to measure the dynamics of blood flow where it really matters to nerve cells."

Source: University of California - San Diego

Explore further: Researcher working to develop new tool for non-invasive neuromodulation of human brain

Related Stories

Researcher working to develop new tool for non-invasive neuromodulation of human brain

August 23, 2017
A UTA researcher is developing a technology that will map and image the effects of infrared light shone on the human brain that may be able to modulate and improve brain waves and circuits at certain spots in the brain.

New equipment maps brain activity and blood flow in state-of-the-art neuroscience lab

August 23, 2017
Using lasers and photodetectors, a new optical brain-imaging tool is providing a never-before-seen look inside your head. The non-invasive tool projects and measures infrared light as it is projected into the brain and the ...

The brains of newborns distinguish between caresses

August 22, 2017
The ability to distinguish between different kinds of caresses on the skin already exists at a very early age. This is evident from a study by the Sahlgrenska Academy, in which the blood supply in brains of infants 6 to 10 ...

Brain's self-regulation in teens at risk for obesity

August 22, 2017
In a small study that scanned the brains of teenagers while exposing them to tempting "food cues," researchers report that reduced activity in the brain's "self-regulation" system may be an important early predictor of adult ...

Trigeminal nerve stimulation shows promise for management of traumatic brain injury

July 28, 2017
Researchers at the Feinstein Institute for Medical Research and the department of neurosurgery at the Hofstra Northwell School of Medicine, announced today that they have published a paper with research findings that could ...

Brain study connects cannabis, oxygen changes

August 14, 2017
New research from the Center for BrainHealth at The University of Texas at Dallas reveals that levels of THC, the psychoactive ingredient in cannabis that leaves a euphoric feeling, directly correlate to changes in how the ...

Recommended for you

New understanding of how muscles work

August 23, 2017
Muscle malfunctions may be as simple as a slight strain after exercise or as serious as heart failure and muscular dystrophy. A new technique developed at McGill now makes it possible to look much more closely at how sarcomeres, ...

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.