Googling brain proteins with 3-D goggles

February 15, 2007
Googling brain proteins with 3-D goggles
Abundance profiles of four different proteins compiled from 1 millimeter cubes (voxels) in a mouse brain. The boxes correspond to the locations of the voxels in the brain, and the colors represent their relative abundance in each region (from high, red, to low, violet). Credit: Pacific Northwest National Laboratory

The Allen Brain Atlas, a genome-wide map of the mouse brain on the Internet, has been hailed as “Google of the brain.” The atlas now has a companion or the brain’s working molecules, a sort of pop-up book of the proteins, or proteome map, that those genes express.

The protein map is “the first to apply quantitative proteomics to imaging,” said Richard D. Smith, Battelle Fellow at the Department of Energy’s Pacific Northwest National Laboratory, who led the mapping effort with Desmond Smith of UCLA’s David Geffen School of Medicine.

“Proteins are the lead actors, the most important part of the picture,” PNNL’s Smith said. “They are the molecules that do the work of the cells.”

Fine-tuning such proteome maps will enable comparisons of healthy brains with others whose protein portraits look different. Contrasts in location and abundance of proteins may display the earliest detectable stages of Alzheimer’s, Parkinson’s and other neurological diseases. They hope such diseases might be curbed if caught and treated early enough.

The National Institutes of Health-funded study, performed at DOE’s Environmental Molecular Sciences Laboratory on PNNL’s campus, is published in the advance online edition of Genome Research and featured in current Nature online Neuroscience Gateway (www.brainatlas.org>). PNNL staff scientists Vladislav A. Petyuk, Wei-Jun Qian and UCLA’s Mark Chin are co-lead authors.

To produce the map, the team characterized center-brain slices as several dozen 1 millimeter cubes, or “voxels,” to “show us where proteins appear in the brain and where they vary in abundance,” PNNL’s Smith said. “We labeled all the proteins so we would have reference points so we know we’re looking at the same protein between different parts of the brain and from one mouse to another.”

Until now, proteomics, which enlists a specially modified instrument called a mass spectrometer for the task of identifying proteins and tallying them, has been akin to flying blind over a lake of proteins. The abundance and protein type could be discerned from a given sample, but “knowing their location and how the abundances change in different cases is important for understanding what they do,” PNNL’s Smith said.

He said that variations in genomic material across the slice, specifically messenger RNA, from the Allen Brain Atlas should be similar to the observed proteome. This turned out to be the case, which helped to validate the new measurements.

“What the Allen Brain Atlas doesn’t tell you is which genes produce proteins and how much of each of them,” he said. Marrying the voxel map with proteomics, researchers were able to generate “quantitative information on close to 1,200 different proteins.”

Source: Pacific Northwest National Laboratory

Explore further: Researchers map out genetic 'switches' behind human brain evolution

Related Stories

Researchers map out genetic 'switches' behind human brain evolution

January 11, 2018
UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors ...

New technology will create brain wiring diagrams

January 9, 2018
The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain's ...

Researchers identify new potential drug target for Huntington's disease

January 12, 2018
A team of researchers led by the University of Michigan, the Baylor College of Medicine and the National Center for Advancing Translational Sciences has identified a new drug target for treating Huntington's disease, a fatal ...

A non-invasive method to detect Alzheimer's disease

December 19, 2017
New research has drawn a link between changes in the brain's anatomy and biomarkers that are known to appear at the earliest stages of Alzheimer's disease (AD), findings that could one day provide a sensitive but non-invasive ...

Research exploring common biology of cancer, infection and psychiatric disease

November 16, 2017
Nevan Krogan, PhD, is a mapmaker, but the object of his exploration is not any newfound continent or alien world. Instead, he and his colleagues map cells. Rather than cities, towns and interstates, these maps show proteins, ...

Updated brain cell map connects various brain diseases to specific cell types

December 11, 2017
Researchers have developed new single-cell sequencing methods that could be used to map the cell origins of various brain disorders, including Alzheimer's, Parkinson's, schizophrenia and bipolar disorder.

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.