Largest-ever search for autism genes reveals new clues

February 18, 2007

The largest search for autism genes to date, funded in part by the National Institutes of Health (NIH), has implicated components of the brain's glutamate chemical messenger system and a previously overlooked site on chromosome 11. Based on 1,168 families with at least two affected members, the genome scan adds to evidence that tiny, rare variations in genes may heighten risk for autism spectrum disorders (ASD).

The study is the first to emerge from the Autism Genome Project (AGP) Consortium, a public-private collaboration involving more than 120 scientists and 50 institutions in l9 countries. Their report is published online in the February 18, 2007 issue of Nature Genetics.

With NIH support, the AGP is pursuing studies to identify specific genes and gene variants that contribute to vulnerability to autism. These include explorations of interactions of genes with other genes and with environmental factors, and laboratory research aimed at understanding how candidate susceptibility genes might work in the brain to produce the disorders.

"This is the most ambitious effort yet to find the locations of genes that may confer vulnerability to autism," said NIH Director Elias A. Zerhouni, M.D. "The AGP is revealing clues that will likely influence the direction of autism research for years to come."

"Although we know autism is highly heritable, complex gene interactions and submicroscopic anomalies create a din of statistical noise that drowns out detection of signals from linked sites in the genome," explained Dr. Bernie Devlin, University of Pittsburgh, who served as a corresponding author on the project along with the University of Toronto's Dr. Stephen Scherer. "To amplify these signals, we brought to bear gene chip technology with a huge sample, and also screened for these fine-level anomalies, factoring them into the analysis."

Clues emerged adding to evidence that implicates components of the brain's glutamate neurotransmitter system in autism. Glutamate increases neuronal activity and plays an important role in wiring up the brain during early development. Since autism likely stems from faulty wiring, a genetic blueprint gone awry in this pivotal neurotransmitter system is a prime suspect. Some key genes associated with the glutamate system are located in chromosome regions previously associated with autism, note the researchers.

Previous studies have also linked abnormal glutamate functioning to disorders such as Fragile X syndrome and tuberous sclerosis, which share some symptoms with autism. It's not unusual for individuals with either syndrome to be diagnosed with autism.

Among the new clues is stronger evidence for an association between autism and sites of genes for neurexins, molecules that build glutamate synapses – the connection machinery by which brain cells communicate.

A site on chromosome 11 most strongly linked to autism in this study harbors genes for proteins that shuttle glutamate across the synapse. Although detected previously, the linkage signal at this site was regarded as less important until now.

Submicroscopic anomalies – tiny deletions, or the doubling, tripling or even multiplying of stretches of genetic material – are relatively common in the human genome and aren't necessarily harmful. However, recent evidence suggests that these anomalies may contribute to risk for – or rarely even cause – autism if they affect certain sites associated with the disorder. The AGP researchers found a number of these variations in such suspect chromosomal locations in affected individuals, including deletion of a neurexin gene.

These anomalies can also make it more difficult to detect the genes that more commonly account for autism risk, say the researchers. Since each major autism candidate gene likely contributes to risk for a relatively small percentage of families, its linkage signal can easily be lost in the statistical noise generated by those of the anomalies – just as a high level of static can drown out a weak radio signal.

To amplify the power of possible linkages detected, the researchers analyzed many subsets of data, variously excluding from the sample factors like the submicroscopic anomalies, female sex, and ethnicity. These analyses unmasked several suggestive linkages that would otherwise have eluded detection.

Researchers last Fall reported discovery of a gene version linked to autism and how it likely works at the molecular level to increase risk. The AGP researchers propose that multiple such gene variants, perhaps interacting with each other and with the tiny anomalies, contribute to risk. As more such genes are identified, studies of how they work in the brain – in mice and other model systems – will help to sort out the genetic and proposed environmental influences on autism spectrum disorders, say researchers.

A second phase of AGP studies will follow up on leads suggested in this first phase.

Source: NIH/National Institute of Mental Health

Explore further: Whole genome sequencing identifies new genetic signature for autism

Related Stories

Whole genome sequencing identifies new genetic signature for autism

October 12, 2017
Autism has genetic roots, but most cases can't be explained by current genetic tests.

Newly revealed autism-related genes include genes involved in cancer

September 25, 2017
The identification of genes related to autism spectrum disorder (ASD) could help to better understand the disorder and develop new treatments. While scientists have found many genetic differences in different people with ...

Improvement of the genetic decoding of neurodevelopmental disorders

October 6, 2017
A result that will help in the future diagnosis of children with neurodevelopmental disorders, such as intellectual disability, autism or schizophrenia. A video illustrates this scientific analysis with medical applications.

Cell model of the brain provides new knowledge on developmental disease

September 19, 2017
By reprogramming skin cells into nerve cells, researchers at Karolinska Institutet are creating cell models of the human brain. In a new study published in Molecular Psychiatry the researchers describe how cells from patients ...

Autism study validates importance of spontaneous causal mutations and sheds new light on gender skew

June 8, 2011
A clinically extensive and mathematically powerful study of 1000 families with one autistic child and one unaffected sibling has validated a controversial theory of autism's complex genetic causation. The study for the first ...

Transgenic monkeys could aid study of autism

January 25, 2016
Scientists in China have engineered monkeys with a human autism gene and symptoms, in the hopes of unlocking a treatment for the debilitating but little-understood disorder, a study in Nature said Monday.

Recommended for you

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

New clues to treat Alagille syndrome from zebrafish

October 18, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies potential new therapeutic avenues for patients with Alagille syndrome. The discovery, published in Nature Communications, ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

An architect gene is involved in the assimilation of breast milk

October 17, 2017
A family of "architect" genes called Hox coordinates the formation of organs and limbs during embryonic life. Geneticists from the University of Geneva (UNIGE) and the Swiss Federal Institute of Technology in Lausanne (EPFL), ...

Study identifies genes responsible for diversity of human skin colors

October 12, 2017
Human populations feature a broad palette of skin tones. But until now, few genes have been shown to contribute to normal variation in skin color, and these had primarily been discovered through studies of European populations.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.