It's only a game of chance

March 27, 2007

The validity of a leading theory that has held a glimmer of hope for unraveling the intricacies of the brain has just been called into question. Dr. Ilan Lampl of the Weizmann Institute of Science's Neurobiology Department has produced convincing evidence to the contrary. His findings recently appeared in the journal Neuron.

Cells in the central nervous system tend to communicate with each other via a wave of electrical signals that travel along neurons. The question is: How does the brain translate this information to allow us to perceive and understand the world before us?

It is widely believed that these electrical signals generate spiked patterns that encode different types of cognitive information. According to the theory, the brain is able to discriminate between, say, a chair and a table because each of them will generate a distinct sequence of patterns within the neural system that the brain then interprets. Upon repeated presentation of that object, its pattern is reproduced in a precise and controlled manner. Previous experiments had demonstrated repeating patterns lasting up to one second in duration.

But when Lampl and his colleagues recorded the activity of neurons in the brain region known as the cortex in anaesthetized rats and analyzed the data, they found no difference in the number of patterns produced or the time it takes for various patterns to repeat themselves, compared with data that was randomized. They therefore concluded that the patterns observed could not be due to the deterministically controlled mechanisms posited in the theory, but occur purely by chance.

The consequence of this research is likely to contribute significantly to the ongoing debate on neuronal coding. Lampl: "Since the 1980s, many neuroscientists believed they possessed the key for finally beginning to understand the workings of the brain. But we have provided strong evidence to suggest that the brain may not encode information using precise patterns of activity."

Source: American Committee for the Weizmann Institute of Science

Explore further: Schizophrenia study identifies shifts in patterns of glutamate and GABA in visuospatial working memory network

Related Stories

Schizophrenia study identifies shifts in patterns of glutamate and GABA in visuospatial working memory network

January 18, 2018
A new study in Biological Psychiatry has characterized the patterns of brain neurotransmitters glutamate and GABA in a network of regions that temporarily maintain and process visual information about the location of objects ...

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

DIPG tumor patterns offer new insight on survival

January 17, 2018
The prognosis for all children diagnosed with an aggressive brain tumor known as diffuse intrinsic pontine glioma (DIPG) and similar tumors has been mostly the same: dismal.

New study finds 'baby brain' is real, but the cause remains mysterious

January 15, 2018
So-called "baby brain" refers to increased forgetfulness, inattention, and mental "fogginess" reported by four out of five pregnant women. These changes in brain function during pregnancy have long been recognised in midwifery ...

Neuroscientists suggest a model for how we gain volitional control of what we hold in our minds

January 16, 2018
Working memory is a sort of "mental sketchpad" that allows you to accomplish everyday tasks such as calling in your hungry family's takeout order and finding the bathroom you were just told "will be the third door on the ...

Researchers map out genetic 'switches' behind human brain evolution

January 11, 2018
UCLA researchers have developed the first map of gene regulation in human neurogenesis, the process by which neural stem cells turn into brain cells and the cerebral cortex expands in size. The scientists identified factors ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.