New technique developed for tracking cells in the body

March 20, 2007

Scientists' inability to follow the whereabouts of cells injected into the human body has long been a major drawback in developing effective medical therapies. Now, researchers at Johns Hopkins have developed a promising new technique for noninvasively tracking where living cells go after they are put into the body. The new technique, which uses genetically encoded cells producing a natural contrast that can be viewed using magnetic resonance imaging (MRI), appears much more effective than present methods used to detect injected biomaterials.

Described in the February edition of Nature Biotechnology, the method was developed by a team of researchers from Johns Hopkins' Russell H. Morgan Department of Radiology and Radiological Science, the Hopkins Institute for Cell Engineering, and the F.M. Kirby Research Center for Functional Brain Imaging at the Kennedy Krieger Institute in Baltimore.

In their study, the researchers used a synthetic gene, called a reporter gene, which was engineered to have a high proportion of the amino acid lysine, which is especially rich in accessible hydrogen atoms. Because MRI detects energy-produced shifts in hydrogen atoms, when the "new" gene was introduced into animal cells and then "pelted" with radiofrequency waves from the MRI, it became readily visible. Using the technique as a proof of principle, the researchers were able to detect transplanted tumor cells in animal brains.

"This prototype paves the way for constructing a family of reporter genes, each with proteins tailored to have a specific radiofrequency response," says MRI researcher Assaf Gilad, Ph.D., lead author of the study.

"The specific frequencies can be processed to show up as colors in the MRI image," adds collaborator Mike McMahon, Ph.D., an assistant professor of radiology at the Johns Hopkins School of Medicine "In a way, it's the MRI equivalent of the green and red fluorescent proteins found in nature and used by labs everywhere in the world for multiple labeling of cells."

The problem with using fluorescent proteins, however, is that tissue must be removed from the body for examination under a microscope, which means that the method isn't suitable for use in patients. "In contrast," says Hopkins radiology professor Jeff Bulte, Ph.D., "MRI is noninvasive, allowing serial imaging of cells and cellular therapies with a high resolution unmatched by any other clinical whole-body imaging technique."

Current MRI contrast agents also have several disadvantages. "Their concentration becomes lower every time cells divide," says Peter van Zijl, Ph.D., founding director of the Kirby Research Center for Functional Brain Imaging, "so our ability to see them diminishes.. Also, using magnetic metal allows us to detect only one type of labeled cell at a time." The new approach is not hampered by these limitations.

Source: Johns Hopkins Medical Institutions

Explore further: State-of-the-art MRI technology bypasses need for biopsy

Related Stories

State-of-the-art MRI technology bypasses need for biopsy

January 3, 2018
The most common type of tumor found in the kidney is generally quite small (less than 1.5 in). These tumors are usually found by accident when CAT scans are performed for other reasons and the serendipitous finding poses ...

Community practices not following guidelines for MRI breast cancer screening

December 7, 2017
Guidelines are not being followed to ensure that breast cancer screening of high risk women, such as those with a strong family history of breast cancer, includes an additional MRI (magnetic resonance imaging) scan. According ...

Simple blood test may predict MRI disease activity in multiple sclerosis

November 29, 2017
A blood test to monitor a nerve protein in the blood of people with multiple sclerosis (MS) may help predict whether disease activity is flaring up, according to a study published in the November 29, 2017, online issue of ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

Imaging technique shows Alzheimer's disease progress

November 23, 2017
Using 'Raman' optical technology, scientists of the University of Twente, can now produce images of brain tissue that is affected by Alzheimer's disease. The images also include the surrounding areas, already showing changes.

A non-invasive computational imaging approach may predict response to immunotherapy

October 30, 2017
A computational imaging-based signature of immune-cell infiltration in and around a tumor could predict patients' responses to treatment with anti-PD1/PDL1 immunotherapies, according to data from a study presented at the ...

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.