New adult brain cells may be central to lifelong learning

May 23, 2007

The steady formation of new brain cells in adults may represent more than merely a patching up of aging brains, a new study has shown. The new adult brain cells may serve to give the adult brain the same kind of learning ability that young brains have while still allowing the existing, mature circuitry to maintain stability.

Hongjun Song and colleagues reported their findings in the May 24, 2007 issue of the journal Neuron, published by Cell Press.

In their experiments, they used a virus to selectively label new brain cells with a fluorescent protein in the hippocampus, a major brain center for learning and memory, of adult mice.

The researchers then analyzed the electrophysiological properties of the new neurons at different times after their formation. This analysis enabled them to measure how adaptable, or "plastic," the brain cells were.

The researchers found that the new adult neurons showed a pattern of changing plasticity very similar to that seen in brain cells in newborn animals. That is, the new adult brain cells showed a "critical period" in which they were highly plastic before they settled into the less plastic properties of mature brain cells. In newborn animals, such a critical period enables an important, early burst of wiring of new brain circuitry with experience.

What’s more, the researchers’ molecular analysis showed that the plasticity of new adult neurons depended on the function of one of the same types of receptors that is associated with learning-related processes in newborn animals. Such receptors are the receiving stations for chemical signals called neurotransmitters, launched from neighboring neurons to trigger a nerve impulse in the receiving neurons. Subtle alterations in receptor populations are the means by which the brain wires the preferred pathways in the process of learning and memory.

The researchers also observed in the new adult neurons anatomical evidence of the same kind of formation of new connections that take place in the brains of newborns as they wire new pathways in response to experience.

The researchers wrote that, since the adult form of critical-period plasticity resembles that seen in young brains, "adult-born neurons within the critical period may serve as major mediators for experience-driven plasticity and therefore function as special units in the adult circuitry to contribute to specific brain functions throughout life."

They concluded that "adult neurogenesis may represent not merely a replacement mechanism for lost neurons, but instead an ongoing developmental process that continuously rejuvenates the mature nervous system by offering expanded capacity of plasticity in response to experience throughout life."

Source: Cell Press

Explore further: Building and breaking connections: How neuronal networks influence alcoholism

Related Stories

Building and breaking connections: How neuronal networks influence alcoholism

February 12, 2018
About 15.1 million American adults have alcohol use disorder, meaning they cannot stop drinking despite adverse consequences—in other words, they have what is commonly referred to as alcoholism. Although it has been known ...

Poor fitness linked to weaker brain fiber, higher dementia risk

February 14, 2018
Scientists have more evidence that exercise improves brain health and could be a lifesaving ingredient that prevents Alzheimer's disease.

Alzheimer's drug repairs brain damage after alcohol binges in rodents

February 15, 2018
A drug used to slow cognitive decline in Alzheimer's disease could offer clues on how drugs might one day be able to reverse brain changes that affect learning and memory in teens and young adults who binge drink.

Researchers successfully reverse Alzheimer's disease in mouse model

February 14, 2018
A team of researchers from the Cleveland Clinic Lerner Research Institute have found that gradually depleting an enzyme called BACE1 completely reverses the formation of amyloid plaques in the brains of mice with Alzheimer's ...

Altering Huntington's patients' skin cells into brain cells sheds light on disease

February 5, 2018
Scientists at Washington University School of Medicine in St. Louis have transformed skin cells from patients with Huntington's disease into the type of brain cell affected by the disorder. The resulting mass of neurons serves ...

Stem cell divisions in the adult brain seen for the first time

February 8, 2018
Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons ...

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.