Research deciphers 'déjà-vu' brain mechanics

June 8, 2007

Neuroscientists at the Picower Institute for Learning and Memory at MIT report in the June 7 early online edition of Science that they have identified for the first time a neuronal mechanism that helps us rapidly distinguish similar, yet distinct, places. The discovery helps explain the sensation of déjà vu.

The work could lead to treatments for memory-related disorders, as well as for the confusion and disorientation that plague elderly individuals who have trouble distinguishing between separate but similar places and experiences.

Forming memories of places and contexts in which episodes occur engages a part of the brain called the hippocampus. Study co-author Susumu Tonegawa, Picower Professor of Biology and Neuroscience, and colleagues have been exploring how each of the three hippocampal subregions--the dentate gyrus, CA1 and CA3--contribute to different aspects of learning and memory.

Tonegawa, a Howard Hughes Medical Institute investigator and a frequent world traveler, described his own occasional experience of finding the airport in a new city uncannily familiar. This occurs, he said, because of the similarity of the modules--gates, chairs, ticket counters--that comprise airports worldwide. It is only by seeking out unique cues that the specific airport can be identified, he said. "In this study, we have revealed that learning in the dentate gyrus is crucial in rapidly recognizing and amplifying the small differences that make each place unique," Tonegawa said.

In addition to Tonegawa, authors include Picower Institute research scientist Thomas J. McHugh; former MIT postdoctoral associate Matthew W. Jones; Matthew A. Wilson, Picower Scholar and Professor; and colleagues from the University of California at Los Angeles and Beth Israel Deaconess Medical Center in Boston.

Overlapping blueprints
In this study, the researchers used a genetically altered mouse to pinpoint how the dentate gyrus contributes to the kind of pattern separation involved in telling the difference between new and old spaces.

Researchers believe that a set of neurons called place cells fire to provide a sort of blueprint for any new space we encounter. The next time we see the space, those same neurons fire. Thus we know when we've been somewhere before and don't have to relearn our way around familiar turf.

But if we enter a space very similar to one we have seen before, a new but overlapping set of neurons creates the blueprint. When there is enough overlap between the two sets, we experience an eerie feeling of déjà vu--a French phrase that literally means, "already seen."

As we age, or as neurodegenerative disease such as Alzheimer's advances, it becomes difficult to form unique memories for similar yet distinct places and experiences, leading to the confusion that afflicts some elderly individuals.

Forgetting fear
In experiments with mice genetically engineered to lack a certain gene in the dentate gyrus, Tonegawa and colleagues pinpointed the signaling pathway underlying the recall of specific places.

Different sets of mice were placed in two similar chambers, one of which gave them a mild foot shock. After three days, the mice began to freeze in fear in both chambers, even the one in which they had never been harmed.

Within two weeks, the normal mice learned to associate only one chamber with the foot shocks while recognizing the second as safe. The genetically engineered mice "had a significant but transient deficit in their ability to distinguish similar contexts," McHugh said. "This study shows that plasticity--the ability to change in response to experience--in the dentate gyrus contributes to spatial learning and fine-tuning pattern separation."

Source: MIT

Explore further: The neuroscience of finding your lost keys: How the brain keeps track of similar but distinct memories

Related Stories

The neuroscience of finding your lost keys: How the brain keeps track of similar but distinct memories

March 21, 2013
Ever find yourself racking your brain on a Monday morning to remember where you put your car keys? When you do find those keys, you can thank the hippocampus, a brain region responsible for storing and retrieving memories ...

Portion of hippocampus found to play role in modulating anxiety

March 6, 2013
Columbia University Medical Center (CUMC) researchers have found the first evidence that selective activation of the dentate gyrus, a portion of the hippocampus, can reduce anxiety without affecting learning. The findings ...

Brain abnormality found in group of SIDS cases

November 25, 2014
More than 40 percent of infants in a group who died of sudden infant death syndrome (SIDS) were found to have an abnormality in a key part of the brain, researchers report. The abnormality affects the hippocampus, a brain ...

Scientists watch activity of newborn brain cells in mice; reveal they are required for memory

March 10, 2016
Columbia neuroscientists have described the activity of newly generated brain cells in awake mice—a process known as adult neurogenesis—and revealed the critical role these cells play in forming memories. The new research ...

Computational intelligence opens up new avenues in Alzheimer's research

October 9, 2012
Researchers from the Computational Intelligence Group based at the Universidad Politécnica de Madrid's Facultad de Informática have used machine learning and data mining techniques to compare gene expresssion levels in ...

Memory formation triggered by stem cell development

February 23, 2012
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.