New technique to 'see' and protect transplants successful in diabetic animal model

July 29, 2007

Researchers at Johns Hopkins have found a way to overcome a major stumbling block to developing successful insulin-cell transplants for people with type I diabetes.

Traditional transplant of the cells, accompanied by necessary immune-suppressing drugs, has had highly variable results, from well- to poorly tolerated. Part of the problem, the Hopkins researchers say, is an inability to track the cells—so-called pancreatic beta cells—once they’re inside the body.

Now a new technique encapsulates the insulin-producing cells in magnetic capsules, using an FDA-approved iron compound with an off-label use, which can be tracked by magnetic resonance imaging (MRI). The product, tested in swine and diabetic mice, also simultaneously avoids rejection by the immune system, likely a major reason for transplant failure. The work will be published online next week in Nature Medicine.

“We’re really excited because we can track where we put the cells and make sure their protective housing stays intact and that the cells don’t move. This could solve the mystery of why current transplantation techniques work only for so long,” says one of the study’s authors, Aravind Arepally, M.D., assistant professor of radiology and surgery at Hopkins.

Type I diabetes—the most common childhood sort—causes a person’s immune system to destroy the pancreatic beta cells that make insulin. Without insulin, blood sugar levels can become dangerously high and lead to complications that include blindness or kidney failure. Careful monitoring of blood sugar levels paired with insulin injections can manage the condition, but transplanting healthy beta cells holds more promise for the moment-to-moment fine-tuning of insulin levels, says Arepally.

Current experimental cell transplantation techniques are done “naked and blind,” only lasting a short period of time, according to co-author Jeff Bulte, Ph.D., a professor of radiology and chemical and biomolecular engineering at Hopkins. The unprotected transplanted cells are vulnerable to attack by the recipient’s immune system, and researchers cannot see the cells to figure out why they stop making insulin after a while.

To address both of these challenges, the research team captured beta cells in tiny porous capsules made from a mixture of alginate, a gooey material made from seaweed, and Feridex, a magnetic iron-containing material visible under MRI. They then used a machine that oozes droplets of this mixture to surround and encapsulate individual islet clusters each containing about 500 to 1,000 insulin-producing beta cells. Once the cells are encapsulated, the shell hardens, creating a “magnetocapsule” that measures less than 1/128 of an inch across.

“They’re tiny spheres with nano-scale pores just big enough too let the good stuff out but keep the bad from getting in,” says lead author Brad Barnett, medical student and Howard Hughes fellow at Hopkins. The openings in the magnetocapsule are so small that the body’s immune system sentinels cannot reach and attack the transplanted cells.

The team first transplanted magnetocapsules into the abdomens of mice engineered to develop diabetes. Blood sugar levels in the animals returned to normal within a week and stayed that way for more than two months. In contrast, more than half of untransplanted diabetic mice died, and the rest had very high blood sugar levels.

To mimic human transplantation, the researchers then implanted magnetocapsules into the livers of swine with the help of MRI fluoroscopy, special reflective screens and a computer monitor that provide real-time imaging. The liver was chosen, rather than the usual pancreatic home of beta cells, because it contains many blood vessels that can deliver insulin quickly to the rest of the body.

“Getting the magnetocapsules into the right place requires hand-eye coordination normally required when playing video games,” says Arepally. The team threaded a long needle-like tube into a large vein near the upper thigh and guided the tube upward, across and into a neighboring blood vessel, ending in the body of the liver.

The pigs underwent MRI and blood tests three weeks after magnetocapsule transplantation. MRI showed that the magnetocapsules remained intact in the liver, and blood tests revealed that the cells were still secreting insulin at levels considered functional in people.

“We hope that our magnetocapsules will make tissue-type matching and immunosuppressive drugs problems of the past when it comes to cell-based therapies for type 1 diabetes,” says Bulte.

Source: Johns Hopkins Medical Institutions

Explore further: Smart insulin patch may aid future therapies

Related Stories

Smart insulin patch may aid future therapies

January 18, 2018
A smart insulin patch, once translated for humans, could eliminate the need for constant blood testing and help diabetics maintain a more consistent level of blood glucose.

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

January 16, 2018
In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Diabetes gene found that causes low and high blood sugar levels in the same family

January 15, 2018
A study of families with rare blood sugar conditions has revealed a new gene thought to be critical in the regulation of insulin, the key hormone in diabetes.

Gene therapy restores normal blood glucose levels in mice with type 1 diabetes

January 4, 2018
Type 1 diabetes is a chronic disease in which the immune system attacks and destroys insulin-producing beta cells in the pancreas, resulting in high blood levels of glucose. A study published January 4th in Cell Stem Cell ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.