The building blocks of memory

August 20, 2007
The building blocks of memory
A new contact is established between nerve cells within minutes after a learning stimulus. Yet it takes up to one day until information can be exchanged. It is highly probable that already existing contacts will be displaced by the new connection. Image: Max Planck Institute for Neurobiology, Martinsried

Learning new things, remembering past experiences and adapting to a changing environment - these abilities carried out by the brain are essential for day-to-day survival. This unique flexibility is in part accomplished through the continuous remodeling of the brain’s nerve cells.

Scientists at the Max Planck Institute of Neurobiology were able to demonstrate that neuronal activity causes the formation of new cell connections, and to determine how quickly these new synapses become functional: while nerve cells create new contacts with neighboring cells within a few minutes after stimulation, it takes several hours before these connections are mature enough to transmit information.

"I really have to strain my brain to understand this!" - Who hasn’t experienced this, or something like it, when it comes to trying to understand something complicated? Scientists have only recently been able to show that this is not very far-fetched. For whenever we learn something new, regardless of how complicated it is, our "little grey cells", or neurons, grow new contacts to their neighboring cells. If the new information is retained, then such contacts become stable.

However, what is the time frame for the development of these connections? Is the exchange of information possible immediately after two nerve cells make contact? And what happens in the brain when new information dispels old information, for example, when learning a new language, which can result in the fading of knowledge of a previously learned language? Scientists at the Max Planck Institute of Neurobiology are now able to provide some answers to these questions.

The Martinsried-based neurobiologists, in cooperation with colleagues in Zurich, have been investigating the relation between the development of new cell contacts, called "spines", and the creation of functional synapses. Synapses enable the transfer of information between cells. The scientists have been focusing their experiments on nerve cells from the hippocampus, the brain region that is essential for learning and memory processes.

In order to intentionally cause the nerve cells to react, the scientists stimulated a group of neurons via a short electrical impulse of high frequency. It is a known fact that this type of electrical stimulation causes the formation of new spines - similar to what happens during learning processes. The key question, however, whether and when these new spines actually form functional synapses and thus play a role in memory functions has, thus far, remained unanswered.

Using time-lapse two-photon microscopy, the scientists were able to follow the outgrowth of spines in the immediate area of the stimulated area. Further analysis with an electron microscope enabled the detection of functional synapses in the newly developed spines. The observed changes in neuronal connections and their dynamics surprised the scientists: new spines began to sprout from the stimulated nerve cells within minutes of the stimulation. The growth of these thin spines was initially not random, but directed toward a potential contact site.

However, despite the quick connection of these spines to new contact sites, their further differentiation seemed to follow the motto "haste makes waste": the transfer of information through the newly established contact was not possible within the first eight hours. It took another few hours before it could be established whether the connections would degenerate or thrive, thereby forming synapses. All of the contacts that still persisted after 24 hours had fully-functional synapses and a good chance for continued existence.

The unraveling of the time-scale and functional relationships were not the only exciting observations that the scientists were treated to. When a new spine made contact with a site already hosting a contact, the new spine was highly likely to displace the old connection. "We are not yet completely sure what this means," said Valentin Nägerl from the Max Planck Institute of Neurobiology. "But it could indicate, for example, that newly learned information might lead to a fading of older information."

That it is easier to retrieve information which has been learned previously could also be related to spine modifications: the displaced connections might not disintegrate completely, but can perhaps be reactivated again at a later time. If this is true, and whether repeated learning impulses have an effect on the development and longevity of synapses, are some of the questions now being pursued by the scientists. All of these findings are contributing to a better understanding of the mechanisms involved in learning and memory. And it is also relatively safe to assume that a few of your nerve cells have just made some new connections.

Citation: Nägerl UV, Köstinger G, Anderson, JC, Martin AC and Bonhoeffer T, Protracted synaptogenesis after activity-dependent spinogenesis in Hippocampal neurons, The Journal of Neuroscience, July 2007

Source: Max Planck Institute of Neurobiology

Explore further: GABA, GABA, GABA, what does it actually do in the brain?

Related Stories

GABA, GABA, GABA, what does it actually do in the brain?

May 16, 2018
Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is the control knob of all control knobs. But why GABA? What, if anything, might be so special about the molecule?

What learning looks like in the brain

April 23, 2018
When we learn the connections between neurons strengthen. Addiction or other neurological diseases are linked to abnormally strong connections. But what does learning look like on the cellular and molecular level? How do ...

Drug may reverse imbalance linked to autism symptoms

May 8, 2018
An FDA-approved drug can reverse an ionic imbalance in neurons that leads to hyper-excitability in mice modeling an autism-related genetic disorder, according to a Northwestern Medicine study published in Molecular Psychiatry.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

Making new memories is a balancing act

March 14, 2018
Those of us who can't resist tourist tchotchkes are big fans of suitcases with an expandable compartment. Now, it turns out the brain's capacity for storing new memories is expandable, too, with limitations.

Recommended for you

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

Hotter bodies fight infections and tumours better—researchers show how

May 21, 2018
The hotter our body temperature, the more our bodies speed up a key defence system that fights against tumours, wounds or infections, new research by a multidisciplinary team of mathematicians and biologists from the Universities ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

Robots grow mini-organs from human stem cells

May 17, 2018
An automated system that uses robots has been designed to rapidly produce human mini-organs derived from stem cells. Researchers at the University of Washington School of Medicine in Seattle developed the new system.

Scientists uncover a new face of a famous protein, SWI2/SNF2 ATPase

May 17, 2018
A team of Texas A&M and Texas A&M AgriLife Research scientists now have a deeper understanding of a large switch/sucrose non-fermentable (SWI/SNF) protein complex that plays a pivotal role in plant and human gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.