A drug-sensitive 'traffic cop' tells potassium channels to get lost

September 2, 2007

Our brains are buzzing with electrical activity created by sodium and potassium ions moving in and out of neurons through specialized pores. To prevent the constant chatter from descending into chaos the activity of these ion channels has to be tightly regulated.

One possibility is to issue the channels a ticket straight to the cellular dumpster, discovered researchers at the Salk Institute for Biological Studies. A novel intracellular traffic coordinator pulls potassium channels from their job and whisks them to the recycling plant when not needed to put a damper on brain cells’ excitability, they report in the September issue of Nature Neuroscience.

“Neurons have the task of integrating many incoming signals from other neurons and must strictly regulate their intrinsic membrane excitability,” says Paul A. Slesinger, Ph.D., an associate professor in the Peptide Biology Laboratory at the Salk Institute who led the study. “Controlling the surface expression of ion channels with the help of trafficking molecules is a very efficient way to do it,” he adds.

Brain cells signal by sending electrical impulses along their axons, long, hair-like extensions that reach out to neighboring nerve cells. They make contact via specialized structures called synapses, from the Greek word meaning “to clasp together.” When an electrical signal reaches the end of an axon, the voltage change triggers the release of neurotransmitters, the brain’s chemical messengers.

These neurotransmitter molecules then travel across the space between neurons and set off an electrical signal in the adjacent cell — unless the receiving end is decorated with so called GIRK channels, that is. In response to incoming signals, these channels open up, creating many little “potassium leaks” and as a result the signal fizzles.

GIRK channels (short for G-protein-coupled inwardly rectifying potassium channels) – a subtype of the many different potassium channels in the brain – are widely distributed in the brain and regulate neuron-to-neuron communication. Research from the Slesinger lab discovered previously a role for GIRK channels in regulating the response to illicit drugs and alcohol.

Now, using a proteomics approach, Slesinger and his team searched for proteins that might regulate the activity of GIRK3 channels and found SNX27. “We knew that the GIRK3 subtype has a unique code on its tail, like a signpost, that might interact with other proteins” says Slesinger.

SNX27 is a member of the sorting nexin-family, a diverse group of proteins that can bind cellular membranes and make contact with other proteins, which testifies to their role as facilitators for membrane trafficking and protein sorting. Indeed, increasing SNX27 protein in cells led to reduced GIRK activity. A closer look revealed that SNX27 colocalizes with GIRK channels in the hippocampus, a structure that plays an important role in learning and memory.

“The expression of different types of GIRK channel subunits in neurons along with varying levels of specific trafficking proteins, such as SNX27, could dictate the ultimate expression levels on the surface of the plasma membrane, and therefore the strength of inhibitory signaling in the brain,” says Slesinger.

Interestingly, independent researchers found previously that abused drugs such as cocaine and methamphetamine increase the activity of the SNX27 gene in rats. “Changes in the expression of SNX27 may establish an important link between trafficking of GIRK channels and the action of drugs in the brain, possibly opening up new avenues for the treatment of drug addictions,” says Slesinger.

Source: Salk Institute

Explore further: Researchers identify changes that may occur in neural circuits due to addiction

Related Stories

Researchers identify changes that may occur in neural circuits due to addiction

May 12, 2014
A research team from the Friedman Brain Institute of the Icahn School of Medicine at Mount Sinai has published evidence that shows that subtle changes of inhibitory signaling in the reward pathway can change how animals respond ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.