CSHL researchers discover three new genes that cause lung cancer

October 8, 2007

Researchers at Cold Spring Harbor Laboratory (CSHL) have discovered three genes that interact with cancerous results in 20% of lung cancers. The three genes are located next to each other on human chromosome 14 and two are known to play key roles in fetal lung development.

According to CSHL lead investigator David Mu, “lung cancer cells in adults can reactivate genes that are normally active in the earliest stages of lung development. We identified the mutation that triggers this abnormal re-activation of developmental genes and showed that if you turn off these genes, you stop the cancer.”

The CSHL research found that the three genes termed TTF1, NKX2-8, and PAX9 interact to reactivate what appears to be an early fetal gene expression pattern that results in cancer tumor growth. “The collaboration of these genes and the fact that they are so close together on the chromosome may explain why this mutation is so common in lung cancer,” said CSHL investigator and co-author Scott Powers. In collaboration with Dr. William Gerald at the Memorial Sloan Kettering Cancer Center, the study finds that the mutation is more prevalent in late stage lung cancer and is possibly a risk factor for recurrence.

The CSHL-led research demonstrates that the cancerous results of the mutation can be reversed. In the future, this may lead to new treatment options for patients. Cancer research that looks at one gene at a time ignores the fact that cancers are usually caused by multiple collaborating cancer genes. Mutations in these genes determine the clinical outcome of the cancerous growth and how the cancer responds to treatment.

“At CSHL we are excited about the ability to apply direct genomic analysis to human cancers and discover more about how cancer genes interact,” said Howard Hughes Medical Institute Investigator and CSHL Cancer Center Deputy Director Scott Lowe.

Source: Cold Spring Harbor Laboratory

Explore further: Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers

Related Stories

Clusters of cooperating tumor-suppressor genes are found in large regions deleted in common cancers

May 7, 2012
Scientists at Cold Spring Harbor Laboratory (CSHL) and Memorial Sloan-Kettering Cancer Center have amassed strong experimental evidence implying that commonly occurring large chromosomal deletions that are seen in many cancer ...

Unconventional hunt for new cancer targets leads to a powerful drug candidate for leukemia

August 3, 2011
Scientists at Cold Spring Harbor Laboratory (CSHL) and five other institutions have used an unconventional approach to cancer drug discovery to identify a new potential treatment for acute myeloid leukemia (AML). As reported ...

Mutations in gene promoters reveal specific pathway pathologies in pancreatic cancer

May 8, 2017
Over the last decade, it has made good sense to study the genetic drivers of cancer by sequencing a tiny portion of the human genome called the exome - the 2% of our three billion base pairs that "spell out" the 21,000 genes ...

Novel drug therapy kills pancreatic cancer cells by reducing levels of antioxidants

July 28, 2016
Reducing levels of antioxidants in pancreatic cancer cells can help kill them, newly published research reveals, suggesting an entirely new treatment strategy for the notoriously lethal illness, in which less than 5 percent ...

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

December 8, 2016
Discovered in the 1970s, tumor suppressors are among the most important proteins in the body. A master regulator of growth—"the guardian of the genome"—the p53 protein monitors cell growth for errors. We rely on suppressors ...

Study shows relationship between two mutated genes can dictate outcome of prostate cancer

August 15, 2011
Of the 250,000 American men who will be diagnosed with prostate cancer this year, very few of them—about 1 percent—will develop lethal, metastatic disease. Finding a way to distinguish between this small cohort ...

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.