Researcher tracks genetic journey of HIV from birth to death

October 16, 2007

University of Florida scientists have discovered how HIV evolves over the course of a person’s lifetime into a more deadly form that heralds the onset of full-blown AIDS. The findings could pave the way for new therapeutic agents that target the virus earlier in the disease process, before it takes a lethal turn, researchers say.

“We were very interested in understanding how the virus mutates from the beginning of the infection until the end,” said Marco Salemi, an assistant professor of pathology, immunology and laboratory medicine in the UF College of Medicine and lead author on the study, which appeared in an online issue of the journal PLoS ONE in September. “Previously, the only thing known was that somehow the HIV population mutates. And as soon as that happens, patients start developing AIDS. But no one knew how and where the population evolved over time.”

To find out, UF researchers began tracking four children born with HIV, studying blood samples taken at birth, throughout life and just after death, when tissues samples were also taken. Using a high-resolution computational technique, they monitored mutations in a protein that helps HIV attach to human cells and then categorized the virus into two groups, R5 and X4. The R5 population is usually present in high numbers during the early stages of infection. But the X4 population enters the scene later, just before HIV gives way to full-blown AIDS. The researchers tracked the viruses in each patient to find out when and where the telltale X4 population first appeared.

“The general dogma has always been that the X4 viruses are more pathogenic than the R5 viruses. And that really isn’t true. People die from the R5 viruses,” said Maureen Goodenow, senior author of the paper and the Stephany W. Holloway university chair for AIDS research in the UF College of Medicine. “But certainly evolution of these X4 viruses is not a good prognostic indicator. So if we could understand the selective pressures that push viruses to develop like that, and the steps involved in the conversion of viruses, then we might be able to set up new targets for drug development.”

Previous studies have relied on cell culture or animal models to follow the virus’ mutations over time. The UF researchers are among the first groups to study the progression of HIV in human patients.

As the study revealed new information about the evolution of HIV, UF scientists learned that most viral changes take place in the thymus, a small organ located behind the breastbone that is responsible for immune cell development.

“We found that the late-stage viruses, the X4 viruses, were localized predominantly in the thymus,” Goodenow said. “It says that the thymus is the place where these viruses develop, or at least where they’re localized and replicate.”

The origin of the X4 viruses has puzzled scientists for years. The UF research reveals that the X4 viruses are not present in the body all along, as some scientists had speculated, but rather, that they evolve directly from the R5 population just before the onset of AIDS. The researchers also found that HIV followed a similar path in each child, regardless of variations in the patients’ medical histories.

“We’re starting to see what looks like a program of virus development over time. And it doesn’t matter who the person is. And it doesn’t matter what the time scale is,” Goodenow said. “It’s raising the possibility that, in fact, the evolutionary track of the virus is not totally random. There could be a real developmental program that the virus goes through.”

Eight years ago, when the National Institutes of Health-funded study began, pregnant women infected with HIV had few therapeutic options. But recent advances in prenatal drug therapies have substantially decreased the rates of mother-to-child transmission. The Centers for Disease Control and Prevention estimates that less than 2 percent of American mothers currently infected with HIV/AIDS will transmit the viruses to their babies during birth. Without the drugs, about 40 percent of infected mothers would give birth to babies with HIV.

Those therapies may help future children, but they came too late for the subjects enrolled in the study. The children received minimal medication and all developed full-blown AIDS by their first birthdays.

“Their whole virus infection was what we call the natural history,” Goodenow said. “This tells you what happens in the absence of combination antiretroviral therapy.”

The next step, Goodenow said, will be to track the evolution of HIV in adults before and after treatment. The researchers hope their findings will pave the way for new drugs that interfere with the virus’ ability to evolve in the thymus.

“This is an excellent study that reveals fine-scale patterns in the evolution and adaptation of HIV during infection,” said Oliver Pybus, a research fellow in the department of zoology at Oxford University. Pybus was part of a team that, three years ago in Science, published descriptions of the high-resolution technique UF researchers used in their study. “For the first time, it shows how the movement of immune cells with the body is linked to the evolutionary behavior of the virus, which in turn determines the clinical outcome of infection.”

Source: University of Florida

Explore further: Research exploring common biology of cancer, infection and psychiatric disease

Related Stories

Research exploring common biology of cancer, infection and psychiatric disease

November 16, 2017
Nevan Krogan, PhD, is a mapmaker, but the object of his exploration is not any newfound continent or alien world. Instead, he and his colleagues map cells. Rather than cities, towns and interstates, these maps show proteins, ...

Second-generation vaginal films address issues with current HIV prevention methods

November 15, 2017
Sexual transmission is the main method of human immunodeficiency virus type 1 (HIV-1) infection in women. The effectiveness of topical microbicides for HIV-1 prevention can be inconsistent and insufficient, which are associated ...

Developing a new vaccination strategy against AIDS

November 16, 2017
According to the WHO, there are currently more than 36 million people infected with the human immunodeficiency virus (HIV) and a further 2.4 million become infected every year. Despite treatment success against the virus, ...

Three decades of responding to infectious disease outbreaks

November 14, 2017
Soon after his appointment in 1984 as director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, Anthony S. Fauci, M.D., testified before Congress showing a world ...

Unique approach to treatment of rare and aggressive blood cancers

November 14, 2017
A unique approach to targeting the abnormal T-cells that cause T-cell lymphomas could offer hope to patients with the aggressive and difficult-to-treat family of cancers, finds a study involving researchers from Cardiff University.

Facts about STI testing

November 9, 2017
When we talk about sexual health, many of us get a little uncomfortable. But why? We aren't afraid to talk about getting the flu virus or strep throat. Still, there seems to be a taboo when it comes to talking about, and ...

Recommended for you

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

bmcghie
5 / 5 (2) Oct 16, 2007
They really need to mention that the reason the X4 strain is so terrible is due to the fact that the X4 viruses bind to a CXCR4 co-receptor on the surface of CD4 Tcells. The R5 strain binds to CCR5 on the surface of Macrophages, which only leads to a decrease in innate immune function, which is manageable.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.