Abnormal immune cells may cause unprovoked anaphylaxis

November 9, 2007

Two new clinical reports shed light on why some people suffer from recurrent episodes of idiopathic anaphylaxis--a potentially life-threatening condition of unknown cause characterized by a drop in blood pressure, fainting episodes, difficulty in breathing, and wheezing.

In some of these individuals, researchers have found mast cells (a type of immune cell involved in allergic reactions) that have a mutated cell surface receptor that disturbs normal processes within the cell. Scientists supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH), say the association of this mutation with unprovoked anaphylaxis is striking. The hope is that these individuals may respond to inhibitors targeting the mutated cell surface receptor.

While some people suffer anaphylaxis as part of a serious allergic reaction, in two out of three people, anaphylaxis has no known cause and thus the anaphylactic reaction is called idiopathic.

Anaphylaxis occurs when mast cells release large quantities of chemicals (histamines, prostaglandins and leukotrienes) that cause blood vessels to leak, bronchial tissues to swell and blood pressure to drop. Resulting conditions such as shock and unconsciousness usually resolve in most people treated with epinephrine (adrenaline) and first aid measures. In rare cases, however, death may occur.

Abnormally low blood pressure and fainting episodes are also features of mastocytosis--a disease in which people have an excessive number of mast cells. Several years ago, Dean Metcalfe, M.D., chief of the Laboratory of Allergic Diseases at NIAID, Cem Akin, M.D., Ph.D., and their NIAID colleagues decided to find out whether idiopathic anaphylaxis might have a genetic trigger related to that seen in mastocytosis. It is known that systemic mastocytosis in adults often results from a mutation in the Kit receptor found on the surface of mast cells, a discovery first made by Dr. Metcalfe's team in 1995.

The mutation causes an abnormal growth of mast cells, as is observed in bone marrow biopsies of patients with mastocytosis. So the NIAID team asked, if the Kit mutation could make mast cells grow and cause mastocytosis, and this was associated with anaphylactic reactions, could the same mutation predispose mast cells to release chemicals responsible for idiopathic anaphylaxis?

In a two-year study conducted at the NIH Clinical Center, the researchers examined 48 patients diagnosed with mastocytosis with or without associated anaphylaxis, 12 patients with idiopathic anaphylaxis, and 12 patients with neither disease. Within the group of 12 patients who had idiopathic anaphylaxis, five were found with evidence of a disorder in a line of mast cells (clonal mast cell disorder). The researchers looked for evidence of a Kit mutation in three patients by analyzing bone marrow samples, and all three samples yielded a positive result. The findings demonstrate that some patients with idiopathic anaphylaxis have an aberrant population of mast cells with mutated Kit.

"We believe the mutation may be predisposing people to idiopathic anaphylaxis," says Dr. Metcalfe. "Our findings suggest that in patients with idiopathic anaphylaxis as well as in people with severe allergies, we should look for critical genetic mutations that may change the way a mast cell reacts."

Dr. Metcalfe and his NIAID colleagues report their findings in two journals. The study that appears in an early online edition in Blood describes the presence of an abnormal mast cell population in a subset of patients with idiopathic anaphylaxis. The findings about the mechanism leading to mass cell activation by Kit and the IgE receptor responsible for allergic reactions appear online in Cellular Signalling.

According to the NIAID team, both Kit and the IgE receptor responsible for allergic reactions activate mast cells via a common interior protein of mast cells. They also found that the mutated Kit markedly elevates the activity of that protein, which results in increased cell signaling.

The scientists are now looking to see if artificial mast cells with mutated Kit behave or release chemicals in a manner different from normal mast cells, and also if they respond to inhibitors targeting Kit.

Source: National Institute of Allergy and Infectious Diseases

Explore further: CRF1 stress receptor is regulator of mast cell activity during stress

Related Stories

CRF1 stress receptor is regulator of mast cell activity during stress

November 30, 2017
A new study published online in the Journal of Leukocyte Biology provides new insight into how stress, through signaling of corticotropin-releasing factor (CRF), interacts with cells in the immune system to cause disease. ...

Scientists link cases of unexplained anaphylaxis to red meat allergy

November 28, 2017
While rare, some people experience recurrent episodes of anaphylaxis—a life-threatening allergic reaction that causes symptoms such as the constriction of airways and a dangerous drop in blood pressure—for which the triggers ...

New cell type may help explain why some people have dangerous food allergies

September 22, 2015
Researchers have discovered a new cell type that appears to drive life-threatening food allergies and may help explain why some people get severe allergic reactions and others do not.

Blockade of histamine receptors suppresses intestinal anaphylaxis in peanut allergy

May 25, 2016
Simultaneous pre-treatment with antihistamines that block both the H1 and H4 antihistamine receptors suppressed the gastrointestinal symptoms of food allergy in mice, according to researchers at National Jewish Health. The ...

New target identified to combat deadly allergic reactions

October 24, 2016
Researchers in France have identified a molecular motor that controls the release of inflammatory factors that cause severe and fatal allergic reactions. The study, "Kinesin-1 controls mast cell degranulation and anaphylaxis ...

FDA clears test for mastocytosis diagnosis

May 22, 2012
The Food and Drug Administration has approved a new test to help physicians diagnose a group of rare cell disorders. The test, or assay, was developed by an expert at Virginia Commonwealth University in the field of mast ...

Recommended for you

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

Study looks at how newly discovered gene helps grow blood vessels

February 19, 2018
A new study published today found that a newly discovered gene helps grow blood vessels when it senses inadequate blood flow to tissues.

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.