'Fingerprints' help find genes involved in differentiation

November 14, 2007

A database that includes the molecular profiles of the major components of the blood system – including the stem cells and the cells differentiated from them – enabled researchers at Baylor College of Medicine (BCM) in Houston to identify at least two genes involved in the differentiation process for two different kinds of blood cells.

In a report that appears in the journal Cell Stem Cell today, Dr. Margaret A. Goodell, professor of pediatrics and director of BCM’s STem Cells and Regeneration Center (STaR), and her colleagues described how they used their database to determine what was unique to each blood cell and what was common to all the cell types.

Understanding differentiation and what signals cause the early or progenitor cells to become the more specialized tissues that make multicellular organisms – such as mammals – possible is of vital concern to scientists and particularly stem cell biologists.

In this case, the scientists identified between 100 and 400 genes uniquely expressed in each cell type and termed these “lineage fingerprints,” because they mark the different cells that arise from the various stem cells.

“With unique genes, some will be responsible for generating those cell types,” said Goodell. She and her colleagues caused two of the genes (Zfp105 from the natural killer or NK cell lineage, and Ets2 from the monocyte (white blood cells with a singe nucleus that surround and ingest foreign materials) lineage to overexpress or make more than usual amounts of protein.

“They ended up driving differentiation,” said Goodell. That means that genes encouraged progenitor or early forms of the cells to become the mature or final blood cells that carry out specific tasks in the blood system.

“We are hoping that if we screen more of these genes that we can identify others that cause differentiation,” she said.

In the future, she said, scientists might consider ways to use the genes to help generate the differentiated cells in the laboratory as a particular form of treatment or developing drugs to block the action of the genes. Overproduction of certain blood or immune system cells can lead to cancer or autoimmune disease.

The three-year study involved considerable teamwork, said Goodell, with individuals in the lab taking responsibility for studies involving the different populations of blood cells.


Source: Baylor College of Medicine

Explore further: Cells that die with a bang contribute to high death rate in bloodstream infections

Related Stories

Cells that die with a bang contribute to high death rate in bloodstream infections

October 10, 2017
Cells lining blood vessels in the lungs that are exposed to bacterial toxins don't die easy, according to a new study led by researchers at the University of Illinois at Chicago College of Medicine.

Calcium lets T cells use sugar to multiply and fight infection

October 11, 2017
A calcium signal controls whether immune cells can use the nutrients needed to fuel their multiplication into a cellular army designed to fight invading viruses.

Gene identified that may provide potential therapy for cerebral cavernous malformations

October 10, 2017
Researchers at University of California San Diego School of Medicine, with national collaborators, have identified a series of molecular clues to understanding the formation of cerebral cavernous malformations (CCMs). The ...

Seeing hope: FDA panel considers gene therapy for blindness (Update)

October 9, 2017
A girl saw her mother's face for the first time. A boy tore through the aisles of Target, marveling at toys he never knew existed. A teen walked onto a stage and watched the stunned expressions of celebrity judges as he wowed ...

Areas of glioblastoma tumors correlate with separate subtypes of glioma stem cells

October 10, 2017
A new study published in the Oct. 9 issue of the journal Nature Medicine demonstrates, for the first time, that glioblastoma (GBM), the most common and most lethal brain tumor, is driven by two distinct subsets of cancer ...

Liquid biopsy may be new way to detect liver cancer earlier, easier

October 9, 2017
An international team of researchers at University of California San Diego School of Medicine and Moores Cancer Center, with colleagues at Sun Yet-sun University Cancer Center and other collaborating institutions, have developed ...

Recommended for you

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

Team eradicates hepatitis C in 10 patients following lifesaving transplants from infected donors

April 30, 2017
Ten patients at Penn Medicine have been cured of the Hepatitis C virus (HCV) following lifesaving kidney transplants from deceased donors who were infected with the disease. The findings point to new strategies for increasing ...

'bench to bedside to bench': Scientists call for closer basic-clinical collaborations

March 24, 2017
In the era of genome sequencing, it's time to update the old "bench-to-bedside" shorthand for how basic research discoveries inform clinical practice, researchers from The Jackson Laboratory (JAX), National Human Genome Research ...

The ethics of tracking athletes' biometric data

January 18, 2017
(Medical Xpress)—Whether it is a FitBit or a heart rate monitor, biometric technologies have become household devices. Professional sports leagues use some of the most technologically advanced biodata tracking systems to ...

Financial ties between researchers and drug industry linked to positive trial results

January 18, 2017
Financial ties between researchers and companies that make the drugs they are studying are independently associated with positive trial results, suggesting bias in the evidence base, concludes a study published by The BMJ ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.