For treating malaria, less drugs may be best drugs

November 26, 2007

The current dosage of drugs used in treating malaria may be helping the parasites become resistant to the drugs faster, without improving the long-term outcome in patients. According to evolutionary biologists, studies using mice suggest that the optimal use of the drugs might slow the spread of drug resistance while making the patient just as healthy.

Most malaria infections in the world comprise a mix of parasites, so that as resistant parasites spread in a population, they usually share their human hosts with other parasites that are susceptible to drugs. Over the course of infection, these bugs are locked in competition for the same space – and the same blood cells – within the body.

Normally in the absence of drugs, the susceptible pathogens keep the resistant ones from proliferating. But when infections are treated with drugs, the dynamic changes.

"Drugs kill off the susceptible parasites letting their competitors, the resistant ones, fill the vacant space and expand their numbers," said Andrew Read, professor of biology at Penn State, and an associate at the Center for Infectious Disease Dynamics.

Mutations within the parasites create new resistant strains all the time but scientists argue that the ways drugs are currently used could be accelerating the spread of such strains after they have arisen.

Read and his colleagues Andrew R. Wargo, now a post-doctoral researcher at the University of Washington, Seattle, Jacobus C. de Roode, now an assistant professor at Emory University, and Silvie Huijben and James Shephard, doctoral student and undergraduate student respectively at the University of Edinburgh, infected mice with malaria to see how the parasites respond to drug treatment.

They found that once the drugs eliminated the susceptible microbes, the number of resistant bugs increased twice as much, compared to when the susceptible microbes were present, or when the infections comprised only resistant bugs.

"The more drugs you use, the worse you make the situation in terms of the evolution of drug resistance," said Read, whose findings appear online in the Proceedings of the National Academy of Sciences. "This massively increases the rate of spread of resistance, so the drugs become less and less useful," he added.

Researchers also found the spurt in parasite numbers to be directly proportional to the duration of drug treatment. The resistant bugs reproduced normally after a day of treatment. But after two days of antimalarial treatment, their numbers increased significantly, compared to infections in which they were the sole type of parasite.

"Resistant parasites not only survive but do much better because the drugs have successfully removed their competitors," Read explained. "We suspect this is what is causing the short lifespan of many antimalarial drugs," he added.

For instance, the Penn State researcher pointed out, the usefulness of antimalarial drugs such as chloroquine lasted for decades, while other drugs such as pyrimethamine have been effective for less than a decade.

If the infections in mice mirror malarial infections in humans, the findings may offer a promising solution in slowing the spread of such drug resistance.

According to Read, public health policy places an undue attention on killing every last parasite in a person and that creates a massive selection for resistance because the drugs remove just those parasites that are susceptible to treatment.

"We should examine patterns of drug use that lead to stronger or less stronger selection for drug resistance," said Read. "What you actually want is to use less drugs, after the point where you are still making people healthy."

In other words the idea is to kill just enough pathogens to make a person healthy, but still save an ample number of them to compete with the resistant strain.

"The standard claim that one should take a very large dose designed to annihilate every single parasite in the body… might not always be the best thing to do," he added.

Source: Penn State

Explore further: What 115 years of data tells us about Africa's battle with malaria past and present

Related Stories

What 115 years of data tells us about Africa's battle with malaria past and present

October 17, 2017
It's difficult to accurately measure the number of people who get malaria each year. This is because the malaria symptoms are shared with many other diseases that lead to death or illness, especially among young children.

Scientists support African drug resistance fight

October 2, 2017
Edinburgh researchers have contributed to a Zimbabwean initiative to tackle the threat of growing resistance to antibiotics.

Superbug's spread to Vietnam threatens malaria control

September 21, 2017
A highly drug resistant malaria 'superbug' from western Cambodia is now present in southern Vietnam, leading to alarming failure rates for dihydroartemisinin (DHA)-piperaquine—Vietnam's national first-line malaria treatment, ...

Checkpoint blockade may be key for immunity to malaria

October 2, 2017
A molecule that prevents the immune system from attacking cancer may play a similar role with malaria. A new study by researchers at the University of Iowa Carver College of Medicine shows that targeting the molecule at the ...

Research identifies potential targets for treatment of leishmaniasis

October 6, 2017
Brazilian researchers at the University of São Paulo's Bioscience Institute (IB-USP) are starting to unravel the molecular mechanisms by which the parasite that causes cutaneous leishmaniasis circumvents the host organism's ...

Promising clinical trial results could give doctors a new tool against drug-resistant strains of malaria parasite

September 13, 2017
Tulane University researchers have developed a new drug that is effective against non-severe cases of malaria, according to results from an FDA-supervised clinical trial published in the latest issue of The Lancet Infectious ...

Recommended for you

Portable 3-D scanner assesses patients with elephantiasis

October 17, 2017
An estimated 120 million people worldwide are infected with lymphatic filariasis, a parasitic, mosquito-borne disease that can cause major swelling and deformity of the legs, a condition known as elephantiasis. Health-care ...

New tools to combat kidney fibrosis

October 16, 2017
Interstitial fibrosis – excessive tissue scarring – contributes to chronic kidney disease, which is increasing in prevalence in the United States.

How hepatitis C hides in the body

October 13, 2017
The Hepatitis C (HCV) virus is a sly enemy to have in one's body. Not only does it manage to make itself invisible to the immune system by breaking down communication between the immune cells, it also builds secret virus ...

Largest study yet of malaria in Africa shows historical rates of infection

October 12, 2017
(Medical Xpress)—A team of researchers with members from the Kenya Medical Research Institute, the University of Oxford and the University of KwaZulu-Natal has conducted the largest-ever study of the history of malaria ...

Promising new target for treatment of psoriasis is safe, study shows

October 11, 2017
A protein known to play a significant role in the development of psoriasis can be prevented from functioning without posing a risk to patients, scientists at King's College London have found.

Norovirus evades immune system by hiding out in rare gut cells

October 11, 2017
Noroviruses are the leading cause of non-bacterial gastroenteritis in the world and are estimated to cause 267 million infections and 20,000 deaths each year. This virus causes severe diarrhea, nausea, and stomach pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.