Scientists uncover key pathway, potential drug targets in autoinflammatory disease

November 13, 2007

Molecular biologists at Jefferson’s Kimmel Cancer Center in Philadelphia have detailed the cascade of cellular events behind some potentially dangerous autoinflammatory diseases. In doing so, they not only have gained a greater understanding of the disease process, but have also identified new potential drug targets for diseases ranging from arthritis to cancer.

Reporting in the journal Molecular Cell, Emad Alnemri, Ph.D., professor of Biochemistry and Molecular Biology at Jefferson Medical College of Thomas Jefferson University, and his co-workers describe how two proteins called PSTPIP1 and pyrin interact to cause autoinflammatory diseases, inherited diseases characterized by seemingly unprovoked and recurrent attacks of fever and inflammation. Such diseases have been found largely to be caused by defects in proteins that regulate inflammation.

According to Dr. Alnemri, defects in pyrin, for example, have been linked to familial Mediterranean fever, a sometimes fatal disease found in the Mediterranean, Middle East and Europe. Defects in PSTPIP1 have been linked to a rare, autoinflammatory disease called PAPA syndrome. The two proteins apparently worked together in the same inflammatory pathway, but no one understood how these proteins could lead to disease.

Dr. Alnemri explains, “Because mutant PSTPIP1 proteins interact with pyrin much more strongly than normal PSTPIP1, they cause uncontrolled or exaggerated activation of pyrin and consequently more secretion of IL-1 beta in these patients.”

These proteins now become potential therapeutic targets, Dr. Alnemri says. For example, there is a synthetic analog of the IL-1 receptor “antagonist” called Anakinra that has been successfully used in clinical trials to treat autoinflammatory diseases, including PAPA syndrome and familial Mediterranean fever, in addition to other chronic inflammatory diseases such as rheumatoid arthritis.

He explains that IL-1 beta binds to a receptor on the cell membrane that “induces the inflammatory phenotype.” Anakinra mimics IL-1 beta and binds to the same receptor, preventing IL-1 beta from binding and consequently blocking its effects on cells. “Detailing these mechanisms is not only important for autoinflammatory disease, but for most inflammatory disease in general.”

Chronic inflammation has been linked to the development of cancer, Dr. Alnemri points out. “IL-1 beta appears to play a major role in tumor growth. Elevated concentrations of IL-1 beta have been found in aggressive forms of colon, breast and lung cancers. It’s not clear how IL-1 beta promotes cancer growth, but the data suggest that in addition to its ability to stimulate production of inflammatory factors, it also stimulates cells to produce angiogenic factors to enhance angiogenesis, or the development of tumor-growth promoting blood vessels.”

Dr. Alnemri adds that “IL-1 beta antagonists are being tested against cancer in animal models with notable success, so you might actually be able to treat some forms of cancer by targeting proteins upstream in the inflammatory pathways, such as caspase-1, pyrin or PSTPIP1 to stop the generation of IL-1 beta.”

The team plans next to investigate the role of inflammation in cancer. The researchers would like to study the potential involvement of the inflammatory pathways that they have identified, and whether anti-inflammatory agents that could affect such pathways can also affect cancer.

Source: Thomas Jefferson University

Explore further: Diabetes: Immune system can regulate insulin

Related Stories

Diabetes: Immune system can regulate insulin

November 21, 2017
Inflammation processes are responsible for the failure of insulin production in diabetes patients. The patients' own immune systems can contribute to treatment of this disease: researchers at the University of Basel and University ...

Vitamin D, omega-3 may help clear amyloid plaques found in Alzheimer's

February 5, 2013
A team of academic researchers has pinpointed how vitamin D3 and omega-3 fatty acids may enhance the immune system's ability to clear the brain of amyloid plaques, one of the hallmarks of Alzheimer's disease.

Group investigates how phototherapy combats neuropathic pain

March 28, 2017
Low-level laser therapy has been shown by recent studies to be a non-invasive and effective alternative for treating neuropathic pain, a chronic condition caused by nerve damage, spinal cord injury or diseases such as diabetes.

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.