Lab sheds light on molecular machinery required for translation of histone crosstalk

December 15, 2007

The Stowers Institute’s Shilatifard Lab has published findings that shed light on the molecular machinery required for the translation of histone crosstalk, or communication between histones.

Published in today’s issue of Cell, “Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated COMPASS” examines the yeast homologue of the mammalian MLL complex, a histone methylase involved in the development of childhood Acute Myeloid Leukemia.

Histones are important components of chromatin, the packing material surrounding chromosomal DNA. Also, histones play an important role in the regulation of gene expression. Histone H3 can be modified by methylation and this modification is an essential part of gene expression.

Several years ago, the Shilatifard Lab identified the first histone H3 lysine 4 (H3K4) methyltransferase, known as COMPASS, in yeast. Soon thereafter, it was established that the MLL protein in humans also existed in a COMPASS-like complex capable of methylating H3K4. In 2002, the Shilatifard Lab reported the existence of the first histone crosstalk between histone H2B monoubiquitination for the regulation of histone methylation by COMPASS.

“We now know that this mode of histone crosstalk is highly conserved from yeast to humans, but until now, its molecular mechanism of action was poorly understood. Jung-Shin Lee, a Postdoctoral Research Associate in my laboratory, was able to demonstrate the molecular machinery required for the translation of this histone crosstalk,” said Ali Shilatifard, Ph.D., Investigator and senior author on the paper.

This work demonstrated that the Cps35 subunit of COMPASS is required to translate the crosstalk between H2B monoubiquitination and H3 methylation by COMPASS.

“Given the importance of histone methylation by the MLL complex and leukemia pathogenesis, defining the molecular machinery involved in this process could be highly useful,” said Dr. Shilatifard.

Source: Stowers Institute for Medical Research

Explore further: New research shows how metabolism and epigenetics play a role in cancer development

Related Stories

New research shows how metabolism and epigenetics play a role in cancer development

March 24, 2017
A study published in Briefings in Functional Genomics investigated how epigenetics can modulate human's genetic program—it can emphasize or silence genes. The new research shows that if epigenetics is disrupted, it might ...

Recommended for you

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.