Genes Linked to Parkinson’s Protection Identified by UA Researchers

January 24, 2008

University of Alabama researchers have identified five genes within animal models displaying protective capabilities against a hallmark trait of Parkinson’s disease.

The research, published this month in the Proceedings of the National Academy of Sciences’ Early Edition, is a possible step toward identifying both new targets for drug treatment development and genetic factors that make some people more susceptible to the disease, the researchers said.

“We’ve found five genes so far that significantly protect dopamine neurons from dying within our animal models,” said Dr. Guy Caldwell, associate professor of biological sciences at UA and co-author of the research.

The UA researchers’ efforts, Caldwell said, represent one of the largest functional analyses of genes ever reported for Parkinson's disease. Shusei Hamamichi, a UA doctoral student, is lead author of the research paper and led the University’s effort, along with Renee Rivas and Adam Knight, two UA undergraduates; Songsong Cao, a former doctoral student; Dr. Kim Caldwell, assistant professor of biological sciences, and Guy Caldwell.

Hamamichi’s role represents a “heroic effort,” Guy Caldwell said.

UA researchers used specific strains of tiny nematode worms as animal models for the research. These genetically engineered worms contain a human protein, alpha-synuclein, within their cells. Scientists have learned that people with too many copies of the code for alpha-synuclein within their DNA will contract Parkinson’s.

Extra copies of alpha-synuclein can lead to repeated protein misfolding and death of the dopamine producing neurons in the brain. In Parkinson’s patients, the death of these neurons leads to rigid and tremoring limbs, difficulty in movement and impaired reflexes. More than 1 million Americans are estimated to have Parkinson’s.

Utilizing bioinformatic databases – which contain an abundance of information related to various genes and their genetic associations – the UA researchers first mined the data, prioritizing 867 genes for testing.

Using a revolutionary technique known as RNA interference, or RNAi, Hamamichi removed, one at a time, the functions of each of the 867 genes from the tiny nematodes. This, Caldwell said, enabled the research team to investigate the impact the missing function would have on cellular processes.

“Of these approximate 900 genes, we narrowed it down to 20 top candidates that seemed to have the most significant affect on alpha-synuclein aggregation as the animals aged,” Caldwell said.

Importantly, secondary screening of the 20 genes has thus far revealed five that offer dopamine neurons protection from dying, Caldwell said. The gene identified as offering the most statistically significant protection is a subject of a Michael J. Fox Foundation Target Validation initiative. In that effort, the Caldwells, with foundation funding, are teaming with UAB’s Dr. David Standaert for additional research in mammalian models.

“Even though our functional analysis was done in a worm, worms have dopamine neurons, worms have many of the features in their cells that are shared with us,” said Guy Caldwell, a faculty member in UA’s College of Arts and Sciences. “There’s good reason to believe that things functionally discovered in worms will still have meaning in higher systems.”

More than 50 percent of all human hereditary diseases have been linked to genetic components also found in the worm, so it’s frequently used by scientists as a model on which to study human diseases. “The power of the animal is that we can screen through large numbers of genes very rapidly, and it’s inexpensive. While worms are wonderful, in order to identify a target for true therapeutic development, the best way is to go forward by validating in mammalian models of Parkinson’s,” Caldwell said.

Source: University of Alabama

Explore further: Researchers find new path to promising Parkinson's treatment

Related Stories

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

Researchers increase understanding of gene's potentially protective role in Parkinson's

February 7, 2012
Treatments for Parkinson's disease, estimated to affect 1 million Americans, have yet to prove effective in slowing the progression of the debilitating disease.

Scientists identify metabolic link between aging, Parkinson's

May 30, 2014
(Medical Xpress)—University of Alabama researchers identified within animal models an enzyme that links genetic pathways that control aging with the death of dopamine neurons – a clinical hallmark of Parkinson's disease.

Yeast model connects Alzheimer's disease risk and amyloid beta toxicity

October 27, 2011
In a development that sheds new light on the pathology of Alzheimer's disease (AD), a team of Whitehead Institute scientists has identified connections between genetic risk factors for the disease and the effects of a peptide ...

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.