UVa biomedical engineering study shows magnetic field can reduce swelling

January 3, 2008

A recent study by University of Virginia researchers demonstrates that the use of an acute, localized static magnetic field of moderate strength can result in significant reduction of swelling when applied immediately after an inflammatory injury.

Thomas Skalak, professor and chair of biomedical engineering, and Cassandra Morris, a former Ph.D. student in biomedical engineering at U.Va., reported their findings in the November 2007 edition of the American Journal of Physiology.

In the study, the hind paws of anesthetized rats were treated with inflammatory agents in order to simulate tissue injury. Magnetic therapy was then applied to the paws. The research results indicate that magnets can significantly reduce swelling if applied immediately after tissue trauma.

Since muscle bruising and joint sprains are the most common injuries worldwide, this discovery has potentially significant implications. "If an injury doesn't swell, it will heal faster - and the person will experience less pain and better mobility," says Skalak. This means that magnets might be used much the way ice packs and compression are now used for everyday sprains, bumps, and bruises, but with more beneficial results. The ready availability and low cost of this treatment could produce huge gains in worker productivity and quality of life.

Magnets have been touted for their healing properties since ancient Greece. Magnetic therapy is still widely used today as an alternative method for treating a number of conditions, from arthritis to depression, but there hasn't been scientific proof that magnets can heal.

Lack of regulation and widespread public acceptance have turned magnetic therapy into a $5 billion world market. Hopeful consumers buy bracelets, knee braces, shoe inserts, mattresses and other products that are embedded with magnets based on anecdotal evidence, hoping for a non-invasive and drug-free cure to what ails them.

"The Federal Drug Administration regulates specific claims of medical efficacy, but in general static magnetic fields are viewed as safe," notes Skalak, who has been carefully studying magnets for a number of years in order to develop real scientific evidence about the effectiveness of magnetic therapy.

Skalak's lab leads the field in the area of microcirculation research - the study of blood flow through the body's tiniest blood vessels. With a five-year, $875,000 grant from the National Institutes of Health's National Center for Complementary and Alternative Medicine, Skalak and Morris set out to investigate the effect of magnetic therapy on microcirculation. Initially, they sought to examine a major claim made by companies that sell magnets: that magnets increase blood flow.

In their initial study, magnets of 70 milliTesla (mT) field strength - about 10 times the strength of the common refrigerator variety - were placed near the rats' blood vessels. Quantitative measurements of blood vessel diameter were taken both before and after exposure to the static magnetic fields - the force created by the magnets. Morris and Skalak found that the force had a significant effect: the vessels that had been dilated constricted, and the constricted vessels dilated, implying that the magnetic field could induce vessel relaxation in tissues with constrained blood supply, ultimately increasing blood flow.

Dilation of blood vessels is often a major cause of swelling at sites of trauma to soft tissues such as muscles or ligaments. The prior results on vessel constriction led Morris and Skalak to look closer at whether magnets, by limiting blood flow in such cases, would also reduce swelling.

Given the results of this latest study, Skalak envisions the magnets being particularly useful to high school, college and professional sports teams, as well as school nurses and retirement communities. He has plans to continue testing the effectiveness of magnets through clinical trials and testing in elite athletes. A key to the success of magnetic therapy for tissue swelling is careful engineering of the proper field strength at the tissue location, a challenge in which most currently available commercial magnet systems fall short. The new research should allow Skalak's biomedical engineering group to design field strengths that provide real benefit for specific injuries and parts of the body.

"We now hope to implement a series of steps, including private investment partners and eventually a major corporate partner, to realize these very widespread applications that will make a positive difference for human health," says Skalak.

Source: University of Virginia

Explore further: Doctors develop new way to use MRI to predict pregnancy complications

Related Stories

Doctors develop new way to use MRI to predict pregnancy complications

December 6, 2017
UCLA scientists have developed a new way to use magnetic resonance imaging, or MRI, to scan the placenta. The noninvasive approach offers valuable insights into how the mother's blood enters the placenta and sustains the ...

Smartphone case offers blood glucose monitoring on the go

December 7, 2017
Engineers at the University of California San Diego have developed a smartphone case and app that could make it easier for patients to record and track their blood glucose readings, whether they're at home or on the go.

LDL cholesterol found to be the main modifiable predictor of atherosclerosis in individuals with no risk factor

December 11, 2017
LDL cholesterol (LDL-C), known as 'bad' cholesterol, is the underlying reason why many apparently healthy individuals have heart attacks or strokes during middle age despite not having cardiovascular risk factors such as ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

Deep insight into the heart

December 8, 2017
By no means are only elderly people at risk from heart diseases. Physically active individuals can also be affected, for example if a seemingly harmless flu bug spreads to the heart muscle. Should this remain undetected and ...

HIV directly impacts brain in early stages of infection

November 30, 2017
Stellenbosch University (SU) researchers have discovered that the human immunodeficiency virus (HIV) directly impacts the brain in the early stages of the infection.

Recommended for you

Drug found that induces apoptosis in myofibroblasts reducing fibrosis in scleroderma

December 15, 2017
(Medical Xpress)—An international team of researchers has found that the drug navitoclax can induce apoptosis (self-destruction) in myofibroblasts in mice, reducing the spread of fibrosis in scleroderma. In their paper ...

How defeating THOR could bring a hammer down on cancer

December 14, 2017
It turns out Thor, the Norse god of thunder and the Marvel superhero, has special powers when it comes to cancer too.

Researchers track muscle stem cell dynamics in response to injury and aging

December 14, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) describes the biology behind why muscle stem cells respond differently to aging or injury. The findings, published in Cell Stem Cell, ...

'Human chronobiome' study informs timing of drug delivery, precision medicine approaches

December 13, 2017
Symptoms and efficacy of medications—and indeed, many aspects of the human body itself—vary by time of day. Physicians tell patients to take their statins at bedtime because the related liver enzymes are more active during ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.