Scientists devise approach that stops HIV at earliest stage of infection

February 27, 2008

Their study, which appears this week in the online Early Edition of the Proceedings of the National Academy of Sciences (PNAS), may re-energize attempts to create a preventive/therapeutic vaccine against HIV, say the authors. To date, more than a dozen candidate vaccines, which have attempted to raise immunity against the spiky proteins on the viral envelope, have all failed in clinical testing.

The investigators have created devices they call glycodendrons that are designed to do two things at once: inhibit the transport of HIV from where it traditionally enters the body, preventing it from moving deeper inside where it can infect immune cells; and set up an immune antibody response to a unique carbohydrate structure on the surface of the virus.

“This paper is about a new direction in HIV vaccine design,” said the study’s lead investigator, Scripps Research Chemistry Professor Chi-Huey Wong. “Results we have so far are very promising.”

To date, he says the devices have been able to stimulate the immune system of mice to induce antibodies against HIV surface glycoprotein, and, in laboratory studies, have been able to block the virus from infecting immune cells.

Targeting One Multi-Purpose Area on HIV

This new approach capitalizes on two recent findings in the field of HIV research. One is the discovery that HIV takes a Trojan horse approach to reach cells it needs to infect deep inside the human body. Scientists have described how, when the virus enters the body through sexual contact, it hitches a ride with the dendritic cells of the immune system that stand guard for invaders at the mucosal lining of tissues. The virus outsmarts these cells, however, and latches onto a particular receptor protein, known as DC-SIGN, on the dendritic cells. By sticking to these immune system fighters, HIV manages to evades immune detection while the dendritic cells travel to the ultimate goal of the virus: immune T-Cells in the lymphoid system, which HIV then invades, setting up a deadly infection that spreads.

The second discovery is that an antibody exists that can signal immune destruction of the virus. The antibody, 2G12, protects people who have it against HIV progression, but very few of those who are infected put up such an immune reaction, said the study’s first author, Sheng-Kai Wang, a graduate student in Wong’s laboratory. Scientists at Scripps Research have defined the details of the action of the antibody and found that recognizes a dense cluster if sugars on one region of the virus’s spiky protein coating—which is, strikingly, the same area that HIV uses to bind to the DC-SIGN protein on dendritic cells.

Earlier, Scripps Research Professor Dennis Burton, a co-author of this study, and Wong designed and tested synthetic constructs to mimic the clusters of sugars recognized by 2G12 that could form a vaccine. Wong invented a process he calls programmable one-pot synthesis that allows him to quickly assemble many types of carbohydrate structures by placing a large number of chemical building blocks into a reaction vessel to make sequential chemical reactions.

So the Scripps Research team built a dendron structure that can bind to the DC-SIGN protein, preventing HIV from doing so, and which also mimics the sugar clusters that 2G12 binds to, prompting the immune system to produce destructive antibodies to the viral coat. “The sugar structure is able to inhibit HIV from binding to DC-SIGN on dendritic cells in vitro," Wong said. "But to become a vaccine, as tested in mice, the sugar structure has to be attached to a carrier as the sugar structure alone is too small and too weak to be used as a vaccine. The sugar-carrier conjugate will also inhibit HIV from binding to DC-SIGN.”

The researchers say the next step in the research is to test if the dendron antibody can target the surface coating of different kinds of HIV strains in order to evaluate the potential of the vaccine strategy.

Source: Scripps Research Institute

Explore further: New findings to help HIV scientists establish 'template' for potent antibodies

Related Stories

New findings to help HIV scientists establish 'template' for potent antibodies

November 21, 2017
New data published today in Immunity further illuminate how some human beings generate powerful, HIV-blocking antibodies. Led by scientists at the International AIDS Vaccine Initiative (IAVI) and The Scripps Research Institute ...

Research exploring common biology of cancer, infection and psychiatric disease

November 16, 2017
Nevan Krogan, PhD, is a mapmaker, but the object of his exploration is not any newfound continent or alien world. Instead, he and his colleagues map cells. Rather than cities, towns and interstates, these maps show proteins, ...

New molecule shows promise in HIV vaccine design

October 27, 2017
Researchers at the University of Maryland and Duke University have designed a novel protein-sugar vaccine candidate that, in an animal model, stimulated an immune response against sugars that form a protective shield around ...

HIV remission—the quest to turn lessons from exceptional cases into solutions

November 8, 2017
The case of an HIV-infected child in South Africa who has been in remission for nearly nine years without taking any antiretroviral drugs has provided further proof that HIV remission is possible.

For cancer patients with HIV, immunotherapy appears safe

November 7, 2017
A new category of immunotherapies called checkpoint inhibitors that has been highly effective against many different cancers appears safe to use in patients with both advanced malignancies and HIV, a population excluded from ...

Immune response to HIV virus linked to cancer mutations

October 25, 2017
"Our findings could change the way we treat cancer," said microbiology professor Linda Chelico. Her research, funded by the federal agency NSERC, was recently published in Nucleic Acids Research and a related project was ...

Recommended for you

Scientists find where HIV 'hides' to evade detection by the immune system

October 19, 2017
In a decades-long game of hide and seek, scientists from Sydney's Westmead Institute for Medical Research have confirmed for the very first time the specific immune memory T-cells where infectious HIV 'hides' in the human ...

National roll-out of PrEP HIV prevention drug would be cost-effective

October 18, 2017
Providing pre-exposure prophylaxis (PrEP) medication to men who have sex with men who are at high risk of HIV infection (equivalent to less than 5% of men who have sex with men at any point in time) in England would be cost-effective, ...

Regulatory T cells harbor HIV/SIV virus during antiviral drug treatment

October 17, 2017
Scientists at Yerkes National Primate Research Center, Emory University have identified an additional part of the HIV reservoir, immune cells that survive and harbor the virus despite long-term treatment with antiviral drugs.

New research opens the door to 'functional cure' for HIV

October 17, 2017
In findings that open the door to a completely different approach to curing HIV infections, scientists from the Florida campus of The Scripps Research Institute (TSRI) have for the first time shown that a novel compound effectively ...

Researchers create molecule that could 'kick and kill' HIV

October 5, 2017
Current anti-AIDS drugs are highly effective at making HIV undetectable and allowing people with the virus to live longer, healthier lives. The treatments, a class of medications called antiretroviral therapy, also greatly ...

A sixth of new HIV patients in Europe 50 or older: study

September 27, 2017
People aged 50 and older comprise a growing percentage of HIV patients in Europe, accounting for one in six new cases in 2015, researchers said Wednesday.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.