Promising research on the susceptibility to and drug targets for Parkinson's disease

March 21, 2008

Better understanding of Parkinson’s disease onset during aging is important for improving diagnostics and developing strategies for therapeutic intervention. Scientists from the University Medical Center in Groningen have now identified genes and processes that may underlie what makes some people more susceptible to this disease. Their findings are described in an article published March 21 in the open-access journal PLoS Genetics.

On average, the population of the western world is living longer, resulting in an increased number of people with age-related neurological conditions, including Alzheimer’s and Parkinson’s disease. A cure for these diseases remains elusive because their molecular cause is only partially understood. It has been noted, however, that accumulations of folded proteins are commonly found within the brain cells of those who suffer from these diseases. For this reason “protein misfolding” seems to form the basis of these diseases.

To gain insight into the cellular processes that play a role in protein misfolding, the research group, led by Ellen Nollen, looked for genes in the round worm Caenorhabditis elegans that, if switched off, cause the number of inclusions to increase. During the course of their research, the scientists individually switched off 17,000 of the 19,000 genes and studied the effect on protein formation.

The study findings indicate that the gene sir-2.1 has a considerable effect on protein formation. In humans, this gene, called SIRT1, is evolutionarily conserved and is involved in the aging of yeast, flies, and worms and probably also in mammals. It lengthens the lifespan of worms by the activation of various routes through which signals are transmitted (stress response and insulin signal transduction). These findings suggest that sir 2.1 may represent a possible mechanistic relationship between aging and Parkinson's disease.

The accumulation of proteins has been shown to be strongly age-dependent and to occur in clearly distinguishable phases. From RNA-interference screening, it appears that the manner in which proteins accumulate in the roundworm model can be clearly differentiated from that of other diseases in which the aggregation of proteins occurs. Moreover, it shows a clear link with the aging process, in which the membranes of the endoplasmatic reticulum/Golgi system of the cell probably play a role. This study points the way towards further clarification of the pathological mechanisms of, and the genetic susceptibility to, Parkinson's disease and other conditions in which the disease-specific protein alpha-synuclein plays a role.

Citation: van Ham TJ, Thijssen KL, Breitling R, Hofstra RMW, Plasterk RHA, et al. (2008) C. elegans Model Identifies Genetic Modifiers of a-Synuclein Inclusion Formation During Aging. PLoS Genet 4(3): e1000027. doi:10.1371/journal.pgen.1000027

Source: Public Library of Science

Explore further: Updated brain cell map connects various brain diseases to specific cell types

Related Stories

Updated brain cell map connects various brain diseases to specific cell types

December 11, 2017
Researchers have developed new single-cell sequencing methods that could be used to map the cell origins of various brain disorders, including Alzheimer's, Parkinson's, schizophrenia and bipolar disorder.

Existing cancer medication offers potential to treat Huntington's disease

December 6, 2017
A drug already used to treat certain forms of cancer may also be an effective therapy for Huntington's disease, according to a new study in the latest issue of Science Translational Medicine. The same study also increases ...

Mitochondrial protein in cardiac muscle cells linked to heart failure, study finds

December 5, 2017
Reducing a protein found in the mitochondria of cardiac muscle cells initiates cardiac dysfunction and heart failure, a finding that could provide insight for new treatments for cardiovascular diseases, a study led by Georgia ...

Healthy mitochondria could stop Alzheimer's

December 6, 2017
Alzheimer's disease is the most common form of dementia and neurodegeneration worldwide. A major hallmark of the disease is the accumulation of toxic plaques in the brain, formed by the abnormal aggregation of a protein called ...

Good cells gone bad: Scientists discover PINK-SNO

November 21, 2017
A new study from The Scripps Research Institute (TSRI) is the first to show precisely how a process in nerve cells called the S-nitrosylation (SNO) reaction—which can be caused by aging, pesticides and pollution—may contribute ...

What is inflammation and how does it cause disease?

December 4, 2017
Inflammation has a major impact on our health and quality of life. It's the trigger behind many chronic diseases and a growing burden affecting health care across the globe. But what is inflammation? And what causes it?

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.