Cancer cells spread by releasing 'bubbles'

April 21, 2008

A new fundamental mechanism of how tumour cells communicate has just been discovered by the team of Dr. Janusz Rak at the Research Institute of the McGill University Health Centre (MUHC) in collaboration with Dr Guha from the University of Toronto.

The cancer cells are able to communicate with their more healthy counter-parts by releasing vesicles. These bubble-like structures contain cancer-causing (oncogenic) proteins that can trigger specific mechanisms when they merge into non or less-malignant cells. These findings could change our view on how cancerous tissues work and lead to major clinical innovations. They were published on April 20 in the on-line edition of Nature Cell Biology.

The surface of some brain tumour cells has long been known to express a mutated version of what is called the variant III epidermal growth factor receptor (EGFRvIII). Although this factor is expressed only in a fraction of tumour cells, it has a major impact on the malignancy of the whole tumor. How could this cellular minority have such an important impact" This mechanism was still unknown… until now.

This study shows that the mutated EGFRvIII triggers production of small vesicles that project from the cell membrane and that carry mutated copies of EGFRvIII on their surfaces. They were baptised “oncosomes.” Surprisingly enough, this shows that oncoproteins are not always confined to the cell that produced them. In this case they even migrate!

Oncosomes will migrate until they fuse with another cell, either healthy or benign tumoral. Oncogenic protein AGFRvIII then becomes integrated in the membrane of the “recipient” cell and starts stimulating specific metabolic pathways to make it act in an aberrant and malignant way. Although this may be a transient event, the changes could impact tumor behaviour by more rapid increases in cell numbers and by stimulation of blood vessel growth, hallmarks of malignant brain tumors.

“With this information we can imagine that many mutant proteins are not necessarily confined to the cells that make them, but rather can migrate and spread around as cargo of oncosomes, a process that could be referred to as formation of the “oncogenic field effect,” explained Dr. Rak. “It demonstrates that cancer is a multi-cell process, where the cells talk to one another extensively. This goes against the traditional view that a single ‘mutated’ cell will simply multiply uncontrollably to the point of forming a tumour. This discovery opens exciting new research avenues, but we also hope that it will lead to positive outcomes for patients.”

Indeed, the presence of oncosomes (containing EGFRvIII or other proteins) in blood of cancer patients could become a clinical marker, meaning that doctors could screen for a tumour’s molecular characteristics instead of having to perform invasive surgery or biopsy. Currently, in the case of brain cancer, this very precise assessment cannot be performed without removing the tumour and therefore opening a patient’s skull.

However, the assay and analysis of oncosomes would potentially only require taking a small sample of blood or cerebrospinal fluid. This would be a step in ensuring patient comfort and choosing the best therapeutic strategy for them, factors that are key in the journey towards personalized medicine in a hopefully not-too-distant future.

Source: McGill University

Explore further: New strategy for unleashing cancer-fighting power of p53 gene

Related Stories

New strategy for unleashing cancer-fighting power of p53 gene

December 13, 2017
Tumor protein p53 is one of the most critical determinants of the fate of cancer cells, as it can determine whether a cell lives or dies in response to stress. In a new study published today in the journal Nature Communications, ...

Closing in on advanced prostate cancer

December 13, 2017
In most cases, prostate cancer is cured by surgery and/or radiotherapy. However, 20 percent of patients will need treatment to remove tumour cells but this treatment ceases to be effective after two or three years and the ...

Immunotherapy, gene editing advances extend to Type 1 Diabetes

December 13, 2017
Advances in engineering T cells to treat cancer are paving the way for new immunotherapies targeted at autoimmune diseases, including type 1 diabetes. Now, researchers are also investigating therapies that reprogram T cells ...

New discovery may enhance chemotherapy's efficiency against leukaemia

December 13, 2017
In patients with acute myeloid leukaemia, cancer cells resist the effects of chemotherapy, many times resulting in disease recurrence and ultimately death. Researchers from Instituto de Medicina Molecular (iMM) João Lobo ...

Scientists develop new artificial ovary prototype

December 13, 2017
Belgian researchers have taken important steps towards creating transplantable artificial ovaries. Once successful, these could be of value to women struggling with infertility or cancer patients who cannot conceive after ...

Triple drug treatment combo shows promise in adult leukemia

December 13, 2017
A triple-drug targeted therapy approach could offer an effective new treatment option for chronic lymphocytic leukemia (CLL) that reduces the risk for the long-term side effects experienced with chemotherapy and is given ...

Recommended for you

One in five young colon cancer patients have genetic link

December 13, 2017
As doctors grapple with increasing rates of colorectal cancers in young people, new research from the University of Michigan may offer some insight into how the disease developed and how to prevent further cancers. Researchers ...

Researchers develop test that can diagnose two cancer types

December 12, 2017
A blood test using infrared spectroscopy can be used to diagnose two types of cancer, lymphoma and melanoma, according to a study led by Georgia State University.

Cancer-causing mutation suppresses immune system around tumours

December 12, 2017
Mutations in 'Ras' genes, which drive 25% of human cancers by causing tumour cells to grow, multiply and spread, can also protect cancer cells from the immune system, finds a new study from the Francis Crick Institute and ...

Atoh1, a potential Achilles' heel of Sonic Hedgehog medulloblastoma

December 12, 2017
Medulloblastoma is the most common type of solid brain tumor in children. Current treatments offer limited success and may leave patients with severe neurological side effects, including psychiatric disorders, growth retardation ...

MRI scans predict patients' ability to fight the spread of cancer

December 12, 2017
A simple, non-invasive procedure that can indicate how long patients with cancer that has spread to the brain might survive and whether they are likely to respond to immunotherapy has been developed by researchers in Liverpool.

Drug suppresses spread of breast cancer caused by stem-like cells

December 12, 2017
Rare stem-like tumor cells play a critical role in the spread of breast cancer, but a vulnerability in the pathway that powers them offers a strategy to target these cells using existing drugs before metastatic disease occurs, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.