In lab study, researchers find molecule that disrupts Ewing's sarcoma oncogene

April 14, 2008

Researchers at Georgetown University Medical Center have found a small molecule they say can block the action of the oncogene that causes Ewing's sarcoma, a rare cancer found in children and young adults. If further studies continue to prove beneficial, they say the novel agent could be the first targeted therapy to treat the disease, which can produce tumors anywhere in the body.

The findings, presented today at the annual meeting of the American Association for Cancer Research (AACR) in San Diego, suggest that the unique way in which this molecule works -- through a so-called protein-protein interaction -- could provide a model upon which to design other therapies, says the study's lead investigator, Jeffrey Toretsky, M.D., a pediatric oncology physician and researcher at Georgetown University's Lombardi Comprehensive Cancer Center.

"I think this holds really wonderful promise as a unique way of targeting fusion proteins," he says. "People thought it wasn't possible to have a small molecule that can bind between flexible proteins, but we have shown that it can be done."

This study was conducted in laboratory cells, so additional research is necessary before the novel agent can be tested in patients, Toretsky says. In vivo studies are now underway, he says.

Ewing's sarcoma is caused by the exchange of DNA between two chromosomes, a process known as a translocation. The new gene, known as EWS-FLI1, is created when the EWS gene on chromosome 22 fuses to the FLI1 gene on chromosome 11, and its product is the fusion protein responsible for cancer formation.

In the United States, about 500 patients annually are diagnosed with the cancer, and they are treated with a combination of five different chemotherapy drugs. Between 60-70 percent of patients survive over time, but many have effects that linger from the therapy.

Toretsky has long led research into the causes of, and treatments for, Ewing's sarcoma. He and his laboratory colleagues were the first to make a recombinant EWS-FLI1 fusion protein. "We did this in order to find out if EWS-FLI1 might be binding with other cellular proteins," he says.

They found that, indeed, the fusion protein stuck to another protein, RNA helicase A (RHA), a molecule that forms protein complexes in order to control gene transcription. "We believe that when RHA binds to EWS-FLI1, the combination becomes more powerful at turning genes on and off," says the study's first author, Hayriye Verda Erkizan, Ph.D., a postdoctoral researcher in Toretsky's lab who is presenting the study results at AACR.

The researchers used a laboratory technique to keep RHA apart from the fusion protein, and found that both were important to cancer formation. Knowing that, they worked to identify the specific region on RHA that stuck to EWS-FLI1, and then collaborated with investigators in Georgetown's Drug Discovery Program to find a molecule that would keep the two proteins separated. In other words, such an agent would stick to EWS-FLI1 in the very place that RHA bound to the fusion molecule.

Using a library of small molecules loaned to Georgetown from the National Cancer Institute, the team of investigators tested 3,000 compounds to see if any would bind to immobilized EWS-FLI1 proteins. They found one that did, and very tightly.

This was a wonderful discovery, Erkizan says, because the notion long accepted among scientists is that it is not possible to block protein-protein interactions given that the surface of these proteins are slippery, and much too flexible for a drug to bind to.

"These are wiggly proteins yet this study shows that inhibition of protein-protein interactions with a small molecule is possible," Toretsky says. This possibility means that fusion proteins, such as those produced in other sarcomas as well as diverse disorders, might be inhibited, he says. This is a different process than other drugs that have been shown to work against fusion proteins, such as Gleevec, which blocks the enzyme produced by the chromosomal translocation responsible for chronic myelogenous leukemia (CML). "Gleevec inhibits a single protein, while we are trying to block the binding of two proteins, and we are very enthusiastic about the results so far," Toretsky says.

Toretsky recently received a $750,000 Clinical Scientist Award in Translational Research from the Burroughs Wellcome Fund (BWF), which he will use to accelerate these translational efforts to help treat Ewing's sarcoma, utilizing GUMC's drug discovery program.

Source: Georgetown University

Explore further: Biology of childhood brain tumor subtypes offers clues to precision treatments

Related Stories

Biology of childhood brain tumor subtypes offers clues to precision treatments

October 17, 2017
Researchers investigating pediatric low-grade gliomas (PLGG), the most common type of brain tumor in children, have discovered key biological differences in how mutated genes combine with other genes to drive this childhood ...

New insights into herpes virus could inform vaccine development

October 18, 2017
A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus' entry into cells. The findings, published in Proceedings of the National ...

Discovery of a new fusion gene class may affect the development of cancer

October 5, 2017
A fusion gene occurs when a chromosomal break brings two separate genes together into a new functioning gene. So far, the research has focused on protein-coded fusion genes. However, human genes consist not only of protein-coded ...

New approaches in targeted cancer therapy

September 26, 2017
Precision medicine, which custom-tailors therapies to the needs of individual patients, is becoming more and more important in cancer therapy. Today, molecular-biological diagnostics can precisely identify alterations in ...

Two agents deliver knockout punches to Ewing sarcoma

October 3, 2017
When combined with an already FDA-approved chemotherapy, a novel agent developed by researchers at Georgetown Lombardi Comprehensive Cancer Center, appears to halt the ability of Ewing sarcoma to grow and progress.

Study highlights new link between gene fusion and bladder and brain cancer

August 30, 2017
A study by the University of Warwick sheds new light on gene fusion in bladder and brain cancer.

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.