Prof finds anesthetics affect nerve regeneration

May 6, 2008

A hair strand-thin worm is providing substantial clues on how nerves regenerate, offering insight and hope to finding genes that affect nerve generation and ultimately new drugs and therapies for human neurodegenerative diseases such as Parkinson's or Alzheimer's.

Researchers at The University of Texas at Austin, with collaborators from the University of Michigan, discovered that during surgery to sever its nerves, the 1 millimeter-long worm (called C. elegans) regenerated nerves up to 12 times faster without the use of anesthetics.

"There was this interesting phenomenon," said Adela Ben-Yakar, assistant professor in mechanical engineering. "Without using anesthetics, the axon (which conducts electrical impulses from the neuron) regrew much faster. So we realized the anesthetics really did interfere with the regeneration process."

She noted that the axons regrew within 60 to 90 minutes without the use of anesthetics. Previously with the use of anesthetics, axons took as long as six to 12 hours to regrow. To study nerve regeneration, the axons, which connect neurons, were severed using ultra-short laser pulses to observe what promoted their regrowth.

Researchers observed this critical occurrence as they performed breakthrough, laser nanosurgery using a specially designed micro-fluidic microchip. The chip painlessly immobilizes the live worm using pressure from fluid within the chip and acts as both a tiny operating table and recovery room to examine the worm, which has been widely studied and has more in common with humans than one might think.

Their findings were published in the May issue of Nature Methods.

These results are a continuation of Ben-Yakar's work, which in 2004 showed for the first time certain axons in the roundworm could regenerate when severed or snipped using femtosecond (one millionth of a billionth of a second) laser pulses and was featured in Nature.

Previously, researchers had to anesthetize the worm, perform the surgery and place it in a recovery area. Then, they had to anesthetize it again to study the worm post-surgery. With the new micro-fluidic device and its recovery chambers Ben-Yakar said performing surgeries on the worms is faster, thus, speeding up the research process.

"It's now the best way in a living animal to provide information quickly," she said.

Ben-Yakar said the invention of the micro-fluidic device has far-reaching applications because it allows for faster genetic and pharmacological screenings, accelerating the discovery of new genes that affect nerve regeneration and new drugs and therapies. She said each surgery and imaging session took just 1/20th of the time it took previously thanks to the new chip, which allows for quick funneling from the surgery table to the recovery area and eliminates the need for anesthetics.

The paper's co-authors include: Samuel X. Guo, Frederic Bourgeois and Nicholas J. Durr of the Department of Mechanical Engineering at The University of Texas at Austin; and Trushal Chokshi and Nikos Chronis of the University of Michigan.

Source: University of Texas at Austin

Explore further: The thermodynamics of thought: Soliton spikes and Heimburg-Jackson pulses

Related Stories

The thermodynamics of thought: Soliton spikes and Heimburg-Jackson pulses

September 12, 2013
(Medical Xpress)—In the familiar rendering of a neuron, as in the image above, the so-called electrical spikes are usually depicted as short pulses. In reality, if the spike lasts for over a millisecond and its expanding ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.