Researchers discover how tumor suppressor inhibits cell growth

August 7, 2008

Genes that inhibit the spontaneous development of cancer are called tumor suppressor genes. One of the major tumor suppressors is p53, a protein that acts in the cell nucleus to control the expression of other genes whose products can inhibit cell proliferation (increase in cell number) and cell growth (increase in cell size). Abnormal cell proliferation and growth are characteristics of cancer. Scientists previously knew which p53 target genes inhibit cell proliferation, but those required for inhibition of cell growth were unknown.

New work by researchers at the University of California, San Diego School of Medicine describes the mechanism by which p53 regulates cells and protects them against DNA damage that might lead to cancer. The study shows that two p53 target genes – called Sestrin1 and Sestrin2 – provide an important link between p53 and a protein kinase called mTOR, a central regulator of cell growth. mTOR is the target for the inhibitory activity of the immunosuppressive drug rapamycin, recently found to have anti-cancer activity.

The discovery by Michael Karin, Ph.D., professor of pharmacology in the Laboratory of Gene Regulation and Signal Transduction at the UC San Diego School of Medicine, and postdoctoral research fellow Andrei V. Budanov, Ph.D, will be published in the August 8 issue of the journal Cell.

"The two Sestrin genes appear to be the missing piece of the puzzle that explains how p53 can inhibit the mTOR pathway and thereby negatively regulate cell growth," said Budanov, who added that while the connection between the two was known, the mechanism wasn't previously understood. The finding may prove to be very important in scientists' search for novel inhibitors that stop or slow cancer tumor growth.

In fact, Budanov obtained results suggesting that the two Sestrins may be tumor suppressors in their own right. DNA damage (genotoxic stress) triggers two major biological responses in mammals: cell cycle arrest, which allows repair and survival of the cell; and apoptosis or cell death – a process in which damaged cells, which could otherwise give rise to cancer, are eliminated.

The major tumor suppressor p53 can either inhibit cell proliferation and cell growth or induce cell death; its different functions are mediated through numerous target genes and depend on the extent of damage to the cell. As more than half of human cancers either lost p53 expression or express a defective version of p53, understanding the mechanisms by which p53 accomplishes its critical tumor suppressive function may lead to development of new cancer preventives and therapeutics.

The UCSD researchers wondered what target genes would allow p53 to inhibit cell growth. The central regulator of cell growth is the protein kinase mTOR, whose activity is inhibited by rapamycin, which is used in prevention of organ transplant rejection. Recent work indicates that rapamycin may also be used to inhibit the growth of tumors and render them more susceptible to chemotherapy.

Previous studies conducted by Budanov showed that the Sestrin1 and Sestrin2 proteins, which are expressed in response to genotoxic stress, serve a protective function and may also inhibit cell growth. It has also been shown that Sestrin1 and 2, as well as their master regulator p53, can control the accumulation of reactive oxygen species (ROS), which play important roles in cell signaling. Under genotoxic stress, ROS levels can increase dramatically, which can lead to significant damage to cell structures, resulting in oxidative stress.

"We have now shown that in addition to controlling ROS accumulation, Sestrins and p53 also inhibit cell growth by inhibiting the activity of mTOR. This explains how p53 functions as a potent regulator of so many aspects of cell physiology and provides protection against DNA damage and stress," said Budanov.

Knockout mouse models of Sestrin1 and 2 will be an important tool for studying their role in carcinogenesis, according to the researchers. Karin adds that small molecules that mimic the molecular actions of the Sestrins can be used to control cell metabolism and regain control over cancer cells that have lost their p53.

Source: University of California - San Diego

Explore further: Nutlin-3, a p53-Mdm2 antagonist for nasopharyngeal carcinoma treatment

Related Stories

Nutlin-3, a p53-Mdm2 antagonist for nasopharyngeal carcinoma treatment

August 23, 2017
Nasopharyngeal carcinoma (NPC) is a common epithelial squamous cell head and neck cancer which is strongly associated with gamma herpes Epstein-Barr virus infection and the intake of salted fish. NPC incidence remain significantly ...

Study uncovers mutation that supercharges tumor-suppressor

October 9, 2017
Cancer researchers have long hailed p53, a tumor-suppressor protein, for its ability to keep unruly cells from forming tumors. But for such a highly studied protein, p53 has hidden its tactics well.

Mutant gene found to fuel cancer-promoting effects of inflammation

October 19, 2017
A human gene called p53, which is commonly known as the "guardian of the genome," is widely known to combat the formation and progression of tumors. Yet, mutant forms of p53 have been linked to more cases of human cancer ...

Trial to test new drug in patients with advanced cancer

August 23, 2017
A clinical trial to test a new cancer drug in patients with advanced solid tumours, launches in four centres across the UK, through Cancer Research UK's Centre for Drug Development.

Protein that represses critical checkpoint protein for cellular growth helps drive tumor development

February 13, 2013
(Medical Xpress)—One of the hallmarks of cancer is unchecked cellular growth. Fortunately, our cells contain a number of tumor suppressor proteins, including the cell cycle regulator p21, to keep cell growth in check. The ...

Massey scientists may have found a new way to halt lung cancer growth

June 14, 2017
The gene p53 functions normally as a cancer suppressor, but mutated versions of the gene have been implicated in the development and growth of nearly half of all human cancers. Now, for the first time, scientists at VCU Massey ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.