Team finds genetic link between immune and nerve systems

September 19, 2008

DURHAM, N.C. —Duke University Medical Center researchers have discovered genetic links between the nervous system and the immune system in a well-studied worm, and the findings could illuminate new approaches to human therapies.

For some time, researchers have theorized a direct link between the nervous and immune systems, such as stress messages that override the protective effects of antibodies, but the exact connection was unknown.

"This is the first time that a genetic approach has been used to demonstrate that specific neurons in the nervous system are capable of regulating immune response in distant cells," said Alejandro Aballay Ph.D., Assistant Professor in the Duke Department of Molecular Genetics and Microbiology.

They studied a neural circuit in the roundworm Caenorhabditis elegans.

"The study of neural-immune communications is quite challenging in mammals," Aballay said. "The simple, well-characterized nervous system of C. elegans and its recently discovered innate immune system make it a prime system for research. We can study the mechanisms and biological meaning of the cross-talk between the immune and nervous systems, and our studies should set the stage for a new field of research."

Pamela Marino, Ph.D., who oversees molecular immunology grants at the National Institute of General Medical Sciences of the National Institutes of Health, said, "Dr. Aballay has made use of the well defined genetics of the roundworm to reveal evidence of cross talk between the nervous system and the innate immune system. Beyond neuronal regulation of immunity, this work opens the door to understanding how neurons may affect other non-neural processes, such as fat storage and longevity."

The study, published in the Sept. 18 issue of Science, was funded by grants from the Whitehead Scholars Program and the National Institutes of Health.

The research team used two approaches to show the genetic connection between nerve cells and immune-response cells.

They found that NPR-1, a worm cell receptor linked to proteins that are similar to mammalian neuropeptide Y, functions to suppress the activity of specific neurons that block immune responses. They then studied worms with a mutated npr-1 gene that produced an NPR-1 receptor that didn't function. The scientists showed that when the flawed receptor didn't work, the neurons were able to block the immune response and the worms became more susceptible to infection by pathogens.

The three different neurons found to express the receptor NPR-1 are exposed to the body fluids of the roundworm – the equivalent of the bloodstream in humans. Signals from the neurons can travel and communicate with other tissues, such as intestinal tissue, which often directly contacts microbial pathogens, Aballay said.

They also performed a full-genome analysis on roundworms that had altered nerve-cell function because of a mutation in the npr-1 gene. This analysis showed the animals had poorly regulated expression of genes that encode markers of innate immune responses. In particular, they found that most of the immune marker genes were regulated by a P38 MAPK signaling pathway, which is required for immunity in animals from worms to humans.

"The complexity of the network involved in the communication between the neural system and the immune system expands the number of possible targets for therapeutic interventions," Aballay said. "The nervous system alone provides a large number of targets for novel approaches to boost innate immunity against different pathogens."

Source: Duke University Medical Center

Explore further: Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

Related Stories

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Novel immune cells control neurons responsible for fat breakdown

October 9, 2017
The biological causes underlying obesity have been under intense scrutiny, with studies suggesting a link between the nervous and the immune systems. Now, in a breakthrough study to be published in Nature Medicine on 9 October, ...

Neuro-immune crosstalk in allergic asthma

September 28, 2017
Exactly how asthma begins and progresses remain a mystery, but a team led by researchers at Brigham and Women's Hospital and the Broad Institute of MIT and Harvard has uncovered a fundamental molecular cue that the nervous ...

Allergy drug improves function in patients with chronic injury from multiple sclerosis

October 11, 2017
In a remarkably rapid translation of laboratory research findings into a treatment with the potential to benefit patients, UC San Francisco scientists have successfully completed a Phase II clinical trial showing that an ...

Lower levels of antioxidants may lessen damage from colitis

September 29, 2017
A new study finds that lowering the levels of an antioxidant in the colon has an unexpectedly positive effect on gastrointestinal (GI) inflammation. The paper is published ahead of print in the American Journal of Physiology—Gastrointestinal ...

Will binge-watching TV increase your risk for Alzheimer's disease and diabetes?

September 28, 2017
A recent study published in the journal Medicine and Science in Sports and Exercise was reported in many media outlets as a bringer of "bad news" to television watchers, with the Herald Sun noting:

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.