Heart's surplus energy may help power pacemakers, defibrillators

November 10, 2008,

Surplus energy generated by the heart may one day help power pacemakers and defibrillators implanted in cardiac patients, according to research presented at the American Heart Association's Scientific Sessions 2008.

In a trailblazing experiment, a microgenerator powered by heartbeats produced almost 17 percent of the electricity needed to run an artificial pacemaker. "This was a proof-of-concept study, and we proved the concept," said Paul Roberts, M.D., first author of the study and a Consultant Electrophysiologist at Southampton University Hospital in the United Kingdom. "Harvesting surplus energy might be a major transition in implantable pacemakers and defibrillators because engineers will have more energy to work with."

In their study, researchers found:

-- At a heart rate of 80 beats per minute (bpm), the device yielded an average harvested energy of 4.3 microjoules per cardiac cycle.
-- Increasing changes in the heart rate produced corresponding increases in energy. At 104 to 128 bpm, the harvested energy level increased 140 percent.
-- Decreases occurred when the researchers slowed the heartbeat or lowered blood pressure.
-- Implantation and surplus energy harvesting caused no significant injury to the lining of the heart's chambers.

"What this might mean is that in the next era of pacemakers, you'd get devices that lasted significantly longer and we could add more functions to help monitor the heart," Roberts said. "It's possible they could be efficient enough to allow complete and indefinite powering of pacemakers."

Since their introduction into clinical medicine, implantable pacemakers and defibrillators have saved lives and become more sophisticated. However, adding new monitoring capabilities to the devices has led designers to a critical point.

"The small devices now are really very good, but power consumption must increase if we want to take them to the next level," Roberts said. "Battery technology has plateaued and the only way we are going to increase power is to increase size."

This, in turn, would increase the units' weight, making them more uncomfortable and less cosmetically acceptable to patients because the devices are implanted under the skin.

The innovative generator — called the self-energizing implantable medical microsystem (SIMM) — helps the heart produce more than enough energy with each beat to pump blood.

The SIMM uses two compressible bladders and a microgenerator mounted on the lead of a pacemaker or defibrillator, the wire that connects the device to the heart.

The lead is attached to the end of the right ventricle, and the bladders relay the energy from the pressure of each heartbeat to the microgenerator, which transforms it into electricity for use by the battery.

A consortium of companies including InVivo Technology, Perpetuum and Zarlink Semiconductor developed and tested the SIMM microgenerator with United Kingdom government funds. Researchers used an in-vivo porcine model to evaluate the study. The researchers are now working to improve the materials used in the SIMM microgenerator.

"With different materials, we're seeing even greater energy harvesting," Roberts said. "While at the moment we see about 20 percent harvesting, we're anticipating that will be significantly more in the next iteration of the device."

Source: American Heart Association

Explore further: Patients with kidney disease with heart defibrillators at greater risk of hospitalization

Related Stories

Patients with kidney disease with heart defibrillators at greater risk of hospitalization

February 5, 2018
In a study of nearly 6,000 community-based patients with chronic kidney disease and heart failure, the use of implantable cardioverter defibrillators was associated with a significantly increased risk of subsequent hospitalization.

Brain stimulation shows promise for Alzheimer's disease in early trial

January 30, 2018
Scientists in the US have found that electrically stimulating regions of the brain in three people with Alzheimer's disease was safe and appeared to show an effect on thinking skills and day-to-day tasks in two of the volunteers. ...

Diet may help fight epilepsy when meds fail

December 5, 2017
(HealthDay)—For children with epilepsy who don't find relief from their seizures with medication, a tightly controlled nutrition plan might help, a pair of new studies suggests.

New device could allow your heartbeat to power pacemaker

November 4, 2012
An experimental device converted energy from a beating heart to provide enough electricity to power a pacemaker, in a study presented at the American Heart Association's Scientific Sessions 2012.

Batteryless cardiac pacemaker is based on automatic wristwatch

August 31, 2014
A new batteryless cardiac pacemaker based on an automatic wristwatch and powered by heart motion was presented at ESC Congress 2014 today by Adrian Zurbuchen from Switzerland. The prototype device does not require battery ...

Heart-powered pacemaker could one day eliminate battery-replacement surgery

March 2, 2012
A new power scheme for cardiac pacemakers turns to an unlikely source: vibrations from heartbeats themselves.

Recommended for you

Fabric imbued with optical fibers helps fight skin diseases

February 23, 2018
A team of researchers with Texinov Medical Textiles in France has announced that their PHOS-ISTOS system, called the Fluxmedicare, is on track to be made commercially available later this year. The system consists of a piece ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.