Researchers discover strategy for predicting the immunity of vaccines

November 23, 2008

In the first study of its kind, researchers at the Yerkes National Primate Research Center and Emory Vaccine Center, Emory University, have developed a multidisciplinary approach involving immunology, genomics and bioinformatics to predict the immunity of a vaccine without exposing individuals to infection. This approach addresses a long-standing challenge in the development of vaccines--that of only being able to determine immunity or effectiveness long after vaccination and, often, only after being exposed to infection.

The study, which used the yellow fever vaccine (YF-17D) as a model, is available in the online edition of Nature Immunology and represents a long awaited step forward in vaccine immunology and predictive health.

YF-17D is one of the most successful vaccines ever developed and has been administered to nearly half a billion people over the last 70 years.

"A single shot of the vaccine induces immunity in many people for nearly 30 years," says Bali Pulendran, PhD, lead Yerkes researcher of the study and professor in the Department of Pathology and Laboratory Medicine at Emory University School of Medicine. "Despite the great success of the yellow fever vaccine, little has been known about the immunological mechanisms that make it effective," he continues.

Pulendran's team, including graduate student Troy Querec, PhD, in collaboration with Rafi Ahmed, PhD, director of the Emory Vaccine Center, Eva Lee, PhD, Georgia Institute of Technology, and Alan Aderem, PhD, Institute for Systems Biology in Seattle, sought to determine what makes such a vaccine effective so researchers can design new vaccines against global pandemics and emerging infections that repeat the success of this model vaccine.

The researchers used YF-17D to predict the body's ability shortly after immunization to stimulate a strong and enduring immunity. Researchers vaccinated 15 healthy individuals with YF-17D and studied the T cell and antibody responses in their blood. There was a striking variation in these responses between individuals. Analysis of gene expression patterns in white blood cells revealed in the majority of the individuals the vaccine induced a network of genes involved in the early innate immune response against viruses.

"Using a bioinformatics approach, we were able to identify distinct gene signatures that correlated with the T cell response and the antibody response induced by the vaccine," says Pulendran. "To determine whether these gene signatures could predict immune response, we vaccinated a second group of individuals and were able to predict with up to 90 percent accuracy which of the vaccinated individuals would develop a strong T or B cell immunity to yellow fever," continues Pulendran.

Pulendran and his colleagues are now working to determine whether this approach can be used to predict the effectiveness of other vaccines, including flu vaccines. The ability to successfully predict the immunity and effectiveness of vaccines would facilitate the rapid evaluation of new and emerging vaccines, and the identification of individuals who are unlikely to be protected by a vaccine.

"This type of research is essential to answer fundamental questions that can lead to better vaccinations and prevention of disease. Yerkes, as one of only eight National Institutes of Health–designated national primate research centers, is uniquely positioned to carry out such diverse research," says Stuart Zola, PhD, director, Yerkes Research Center.

Source: Emory University

Explore further: Study explores whole-body immunity

Related Stories

Study explores whole-body immunity

November 21, 2017
Over the next few months, millions of people will receive vaccinations in the hope of staving off the flu—and the fever, pain, and congestion that come with it.

New findings to help HIV scientists establish 'template' for potent antibodies

November 21, 2017
New data published today in Immunity further illuminate how some human beings generate powerful, HIV-blocking antibodies. Led by scientists at the International AIDS Vaccine Initiative (IAVI) and The Scripps Research Institute ...

A structural clue to attacking malaria's 'Achilles heel'

November 16, 2017
Researchers from The Scripps Research Institute (TSRI) and PATH's Malaria Vaccine Initiative (MVI) have shed light on how the human immune system recognizes the malaria parasite though investigation of antibodies generated ...

Study raises possibility of naturally acquired immunity against Zika virus

November 16, 2017
Birth defects in babies born infected with Zika virus remain a major health concern. Now, scientists suggest the possibility that some women in high-risk Zika regions may already be protected and not know it.

Text message reminders increase rates of influenza vaccination

November 15, 2017
Text message reminders are a low-cost effective strategy for increasing rates of influenza vaccination.

Exome sequencing allows scientists to find the mutations responsible for an array of ailments

November 15, 2017
About eight years ago, a doctor in Turkey examined a 5-month-old boy for "failure to thrive and dehydration." Paradoxically, his diapers were wet, so the medical team was inclined to suspect Bartter syndrome, a congenital ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.