DREAM: One gene regulates pain, learning and memory

January 15, 2009

The DREAM-gene which is crucial in regulating pain perception seems to also influence learning and memory. This is the result of studies carried out by researchers in Seville, Spain, and Vienna, Austria. The new findings could help explain the mechanisms of Alzheimer's disease and yield a potential new therapeutic target.

In 2002, a group of scientists at the University of Toronto was able to identify a gene which they dubbed DREAM (downstream regulatory element antagonistic modulator). The gene's function was highly interesting: it obviously served as a key regulator in the perception of pain. Mice who lacked the gene showed clear signs of markedly reduced sensitivity to all kinds of pain, whether chronic or acute. Otherwise, the mice appeared perfectly normal.

The work leading to these findings was carried out in the lab of Josef Penninger, then principal investigator at the Amgen Institute in Toronto. The publication describing the gene's function was received with great interest (Cell, Vol. 108, 31-43, 11.1.2002) and DREAM was subsequently termed the "Master-Gene of pain perception".

Josef Penninger, meanwhile scientific director of IMBA, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences in Vienna, continued to wonder what other surprises DREAM might have in store. In a collaborative effort with neurobiologists from the University Pablo de Olivade (Seville) he devised experiments to follow up on the previous findings. A team of scientists under Ángel Manuel Carrión subjected DREAM-less mice to numerous neurological tests and analyzed their memory skills. The results were striking: without DREAM, mice were able to learn faster and remember better. Fascinatingly, the brains of aged mice (18 months) showed learning capacities similar to those of very young mice.

Thus, DREAM turns out to be a genetic candidate for explaining old age dementia. Even a causal connection to Alzheimer's disease seems plausible. Studies published in mid 2008 suggest that the devastating condition may be related to Calcium regulation gone awry. The accumulation of amyloid plaques in brain cells, usually blamed for Alzheimer's, might be a consequence of the Calcium-imbalance rather than the culprit for the disease.

Calcium regulation is also responsible for tuning the activity of the DREAM-gene. Calcium homeostasis may thus be the link between pain perception, learning and memory. This is supported by observations of patients suffering from chronic pain: very often their ability to memorize is strikingly reduced and they need a lot more time to learn than individuals without pain.

"It is absolutely fascinating that we found a gene which at the same time regulates pain, learning and old age memory function", says Josef Penninger, "and it is of great interest to the millions of people suffering from chronic pain that we follow up on these results."

More information: The paper „Lack of DREAM protein enhances learning and memory and slows brain aging" by Fontán-Lozano et al. has been published in the current issue of the Journal Current Biology [Curr Biol. 2009 Jan 13;19(1):54-60].

Source: Research Institute of Molecular Pathology, Austria

Explore further: Does team bonding help athletes endure more pain?

Related Stories

Does team bonding help athletes endure more pain?

August 8, 2016
Few sports do relentless, tortuous agony quite like rowing – and few rank higher on loyal, bonded camaraderie. Why do painful sports and team bonding go so well together?

Austin, Indiana—the HIV capital of small-town America

May 3, 2016
Jessica and Darren McIntosh were too busy to see me when I arrived at their house one Sunday morning. When I returned later, I learned what they'd been busy with: arguing with a family member, also an addict, about a single ...

Natural birth a tough sell in China's caesarean boom

January 4, 2013
As an automatic piano chimed a wedding march, new mother Wang Dan walked down a red carpet towards a hospital room called the "White House", minutes after giving birth in a candlelit water pool.

Recommended for you

New approach to studying chromosomes' centers may reveal link to Down syndrome and more

November 20, 2017
Some scientists call it the "final frontier" of our DNA—even though it lies at the center of every X-shaped chromosome in nearly every one of our cells.

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.