Researchers identify a mutation that causes inflammatory bowel disease

February 10, 2009,

A team of scientists at The Scripps Research Institute has linked a mouse mutation to an increased susceptibility for developing inflammatory bowel disease -- represented in humans as Crohn's disease and ulcerative colitis, which together are estimated to affect more than a million people in the United States. The findings may one day lead to new and better treatments for the disease.

The work was published in the February 6, 2009 Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

Humans have a gene that is very similar to the mouse gene, called Mbtps1, and in certain rare instances, mutations of this gene may contribute to IBD in humans. The disease is associated with painful ulcers and bleeding in people's intestines and can place them at greater risk for colon cancer. Although common, the disease is still somewhat mysterious. The Scripps Research study sheds light on a major mechanism through which it may develop.

"We are just beginning to get a sense of the complexity of inflammatory bowel disease as far as humans are concerned," says Bruce Beutler, M.D., who is the chair of the Scripps Research Department of Genetics.

Scientists have known for a long time that IBD is linked to genetics—it runs in families, for instance. However, there seems to be no single gene responsible. More likely, says Beutler, mutations in many different genes have additive effects and cause people to develop variably severe forms of the disease. One of the long-term goals of his laboratory is to identify these genes and the main biological processes they control.

In the latest study, Beutler, Research Associate Katharina Brandl, Ph.D., former Research Associate Sophie Rutschmann (now a member of the Faculty of Medicine at the Imperial College, London), and colleagues, discovered how the gene Mbtps1 is linked to ulcerative colitis in mice. What is clear from their studies, says Beutler, is that crippling the protein product of the Mbtps1 gene makes mice prone to colitis.

The Mbtps1 gene codes for the crucial "site-1 protease," or S1P, an enzyme that cleaves other proteins and is required for life. S1P had been known to process transcription factors: proteins that allow the expression of specific genes. By doing so, S1P allows cholesterol synthesis. It also participates in the so-called "unfolded protein response" that is triggered by numerous forms of cellular stress. Without S1P, cellular stress sometimes ends in cell death rather than repair of cell injury.

The team was first alerted to previously unknown functions of S1P through a curious observation. A few years ago, the scientists discovered a mutant mouse they called "woodrat" whose coat turned gray over time—strikingly different from the normal black coat color. It also turned out that the mouse was susceptible to a form of colitis, induced by a chemical called DSS. The scientists turned to a technique called positional cloning to identify the mutation. They were surprised to find that Mbtps1 was the mutant gene. Mbtps1 had not previously been known to support the integrity of the gastrointestinal tract or normal pigmentation of the coat.

Any mouse entirely bereft of the Mbtps1 gene would not survive past the embryo stage. The woodrat mouse, in fact, has a crippled but not entirely worthless version of the gene. The mutation significantly diminishes the capacity of S1P to function. Beutler and his team estimate that the altered S1P protein has less than half but more than 1/8th the activity of the normal enzyme. The diminished capacity to process unfolded proteins makes the woodrat mouse susceptible to developing colitis. What happens is that when cells lining the lower digestive tract are stressed, they begin to synthesize a set of specific proteins to deal with the stress. Mbtps1 and a number of other genes are needed to help process unfolded proteins by activating the unfolded protein response, but the diminished capacity of Mbtps1 causes unfolded protein to build up. If the cells cannot deal with the excess unfolded proteins, they initiate a process called programmed cell death and quickly die.

When the cells lining the intestines die, they leave open spaces through which bacteria in the gut can invade. Ultimately what leads to the disease is not the bacteria themselves but the mouse immune system, which creates a strong inflammatory response to the bacteria. This response causes the bleeding, ulcers, and other symptoms that are the hallmark of IBD.

This is a new model for how IBD develops, says Beutler—one of the first corner pieces in the puzzle that he and his colleagues are fitting together to reveal how the disease arises in all its manifestations.

More information: "Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response" are Xiaohong Li, Xin Du, and Nengming Xiao of The Scripps Research Institute and Bernd Schnabl and David A. Brenner of the University of California, San Diego. See www.pnas.org/content/early/200 … /0813036106.abstract .

Source: Scripps Research Institute

Explore further: In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

Related Stories

In effort to treat rare blinding disease, researchers turn stem cells into blood vessels

February 13, 2018
People who inherit a mutated version of the ATF6 gene are born with a malformed or missing fovea, the eye region responsible for sharp, detailed vision. From birth, their vision is severely limited, and there is no cure. ...

Gene/cell connection provides new insight into how our gut microbiome stays healthy

January 10, 2018
Paneth cells are like an internal antibiotic that eliminates unwanted microbes that make their way into our small intestine and helps us maintain a healthy gut microbiome.

Scientists identify a key mechanism regulating a protein required for muscle and heart function

January 12, 2018
Scientists at the Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Columbia University in New York have discovered an important mechanism in the regulation of a protein that plays an essential role ...

A cluster of mutations in neurofibromatosis is important risk factor for severe symptoms

December 28, 2017
Research led by Ludwine Messiaen, Ph.D., professor of genetics at the University of Alabama at Birmingham, shows that missense mutations in a cluster of just five codons in the NF1 gene are an important risk factor for severe ...

Specialized intestinal cells cause some cases of Crohn's disease

October 2, 2013
Scientists have discovered that Crohn's disease, the inflammatory bowel disorder, can originate from specialised intestinal cell type called Paneth cells. As such, they propose that small intestinal Crohn's disease might ...

A world without color—researchers find gene mutation that strips color, reduces vision

June 1, 2015
People with achromatopsia, an inherited eye disorder, see the world literally in black and white. Worse yet, their extreme sensitivity to light makes them nearly blind in bright sunlight. Now, researchers at University of ...

Recommended for you

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

A new class of drug to treat herpes simplex virus-1 infection

February 14, 2018
For patients with the herpes simplex-1 virus (HSV-1), there are just a handful of drugs available to treat the painful condition that can affect the eyes, mouth and genitals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.