Scientists show extra copies of a gene carry extra risk

February 4, 2009,

Is more of a good thing better? A gene known as LIS1 is crucial for ensuring the proper placement of neurons in the developing brain. When an LIS1 gene is missing, brains fail to develop the characteristic folds; babies with lissencephaly or 'smooth brain' are born severely mentally retarded. But new research by Prof. Orly Reiner of the Institute's Molecular Genetics Department, which recently appeared in Nature Genetics, shows that having extra LIS1 genes can cause problems as well.

Reiner was the first to discover LIS1's tie to lissencephaly, in 1993. Their latest study shows that it works by helping to determine polarity in the cell - how the various organelles are arranged inside the cell as well as where it connects to neighboring cells. Neurons alter their polarity several times during development, especially when they take on an elongated shape and migrate to new locations in the brain.

But what if, rather than too little, the body has too much LIS1? One of the surprises to come out of the recent spate of post-human-genome research is the number of genes that can be repeated or deleted in an individual's genome. Most extra copies of genes may be no more harmful than a computer backup disk, but scientists have been finding that some repeats can cause disease.

Research associate Dr. Tamar Sapir and lab technician Talia Levy, working in Reiner's lab, developed a mouse model in which additional LIS1 protein was produced in the brain. The scientists found that the brains of these mice were a bit smaller than average. On closer inspection, they discovered a range of subtle changes in cell polarity and movement: Nuclei within the proliferating zone tended to move faster, but with less control; rates of cell death were higher; and various factors in the cell became more disordered.

Reiner then asked whether their findings might apply to humans. Together with Jim Lupski and Drs. Weimin Bi and Oleg A. Shchelochkov of Baylor College of Medicine in Houston, Texas, they searched through blood samples using a technique that matches a patient's DNA with control DNA to identify additions or deletions in its sequence. They identified seven individuals with extra copies of either LIS1 or adjacent genes that are also involved in brain development. All suffered developmental abnormalities. Two of the patients - children with a second LIS1 gene - had previously been diagnosed with failure to thrive and delayed development, and were found to have small brain sizes. A third, who had three copies of the gene, was mentally retarded and suffered from bone deformation as well.

Reiner: 'Several brain diseases, including schizophrenia, epilepsy and autism, have been linked to faulty neuron migration, and recent research has hinted that some of these may involve variations in gene number. Our study is the first to demonstrate the effects of the duplication of a single gene in a mouse model and tie it to a new 'copy number variation' human disease.'

For the scientific paper, please see: www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

Source: Weizmann Institute of Science

Explore further: How having too much or too little of CHRNA7 can lead to neuropsychiatric disorders

Related Stories

How having too much or too little of CHRNA7 can lead to neuropsychiatric disorders

November 28, 2017
Studying the genetic code allows researchers to know whether some patients with neuropsychiatric disorders either have extra copies of the CHRNA7 gene or are missing copies. However, little was known about the functional ...

In autism, too many brain connections may be at root of condition

November 2, 2017
A defective gene linked to autism influences how neurons connect and communicate with each other in the brain, according to a study from Washington University School of Medicine in St. Louis. Rodents that lack the gene form ...

Scientists find more DNA and extra copies of disease gene in Alzheimer's brain cells

February 4, 2015
Scientists at The Scripps Research Institute (TSRI) have found diverse genomic changes in single neurons from the brains of Alzheimer's patients, pointing to an unexpected factor that may underpin the most common form of ...

Mechanism that leads to sporadic Parkinson's disease identified

September 25, 2012
Researchers in the Taub Institute at Columbia University Medical Center (CUMC) have identified a mechanism that appears to underlie the common sporadic (non-familial) form of Parkinson's disease, the progressive movement ...

Key regulatory genes often amplified in aggressive childhood tumor of the brainstem

September 19, 2011
The largest study ever of a rare childhood brain tumor found more than half the tumors carried extra copies of specific genes linked to cancer growth, according to research led by St. Jude Children's Research Hospital investigators.

'Gene overdose' causes extreme thinness

August 31, 2011
Scientists have discovered a genetic cause of extreme thinness for the first time, in a study published today in the journal Nature.

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.