New research links platelets to sepsis-related organ failure

March 10, 2009

Scientists at Children's National Medical Center have identified a previously unknown contributor to organ failure in patients suffering from sepsis: platelets.

The finding, published in the American Journal of Respiratory and , is the first time doctors have looked at and linked to poor outcomes from this often fatal infection.

"Despite many medical advances over the last few decades, for have not really improved," said Robert Freishtat, MD, MPH, of the Center for Genetic Medicine Research at Children's National Medical Center, who led the study. "But now that we know that platelets, which we previously believed to be merely 'innocent bystanders,' can actually contribute to the development of fatal complications from sepsis, we can use this knowledge to better gauge someone's risk of dying and to design new interventions."

Sepsis is the tenth leading cause of death in the United States. More than 40 percent of sepsis cases are fatal, and in most, the resulting , not the underlying infection, is the primary cause of death. Through gene and in both septic mice and humans, scientists found that cases of severe sepsis featured a unique attribute: the genes within platelets were triggered to produce a protein known as granzyme B, which has been shown in previous studies to contribute to as part of the body's immune response to cancer and viruses. During sepsis, platelets collect within major organs including the spleen, an important infection-fighting organ. As they collect and come into contact with the organ's cells, the granzyme B, if present, will cause the organ's cells to die. Previous research has shown that that this factor may be a major contributor to organ failure. Granzyme B was only detected in humans and mice with the most severe sepsis.

"Detection of granzyme B in platelets could be a huge step forward in battling sepsis," said Dr. Freishtat. "First, as a prognostic indicator, the protein's presence could show more aggressive treatments are needed right off the bat. Eventually, perhaps this knowledge will help us find a way to prevent organ failure by targeting interventions directly at the platelets and granzyme B production."

More information: "Sepsis Alters the Megakaryocyte-Platelet Transcriptional Axis Resulting in Granzyme B-mediated Lymphotoxicity," ajrccm.atsjournals.org/cgi/con … t/abstract/179/6/467

Source: Children's National Medical Center

Related Stories

Recommended for you

Study opens new avenue in quest to develop tuberculosis vaccine

November 24, 2017
A team of scientists led by the University of Southampton has taken an important step forward in research efforts that could one day lead to an effective vaccine against the world's deadliest infectious disease.

Four simple tests could help GPs spot pneumonia and reduce unnecessary antibiotics

November 23, 2017
Testing for fever, high pulse rate, crackly breath sounds, and low oxygen levels could be key to helping GPs distinguish pneumonia from less serious infections, according to a large study published in the European Respiratory ...

New approach to tracking how deadly 'superbugs' travel could slow their spread

November 22, 2017
Killer bacteria - ones that have out-evolved our best antibiotics—may not go away anytime soon. But a new approach to tracking their spread could eventually give us a fighting chance to keep their death toll down.

Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017
Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier ...

Alcohol consumption and metabolic factors act together to increase the risk of severe liver disease

November 22, 2017
A new study provides insights into the interaction between alcohol consumption and metabolic factors in predicting severe liver disease in the general population. The findings, which are published in Hepatology, indicate ...

Metabolites altered in chronic kidney disease

November 22, 2017
Chronic kidney disease (CKD) affects 1 in 7 people in the United States, according to the U.S. National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK). These individuals have a very high risk of cardiovascular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.