New insights into how SARS pathogen infects host

April 14, 2009 By Krishna Ramanujan
New insights into how SARS pathogen infects host
Infectious bronchitis virus. (Victor Chu)

( -- When Severe Acute Respiratory Syndrome (SARS) first appeared in 2003, international cooperation helped contain the virulent coronavirus, which caused respiratory illness in more than 8,000 people and killed almost 10 percent of them. Better understanding of such viruses will help control similar diseases when they strike again.

Now, Cornell researchers have discovered key properties in coronaviruses that help explain how these viruses invade their hosts and cross species barriers. The SARS virus, for example, originated in bats, jumped to civets (weasel-like mammals) in Chinese markets and then to humans. Other coronaviruses cause the common cold and croup in humans.

The researchers have discovered two sites -- called cleavage sites -- where a key structural protein on the virus gets split, activating a process that allows the virus to enter a host cell. They report their findings online in the . One cleavage site was known to exist, but studies of a mutated vaccine strain of another highly virulent avian coronavirus, known as infectious bronchitis virus (IBV), revealed a second cleavage site. This discovery led Cornell researchers to search for a second cleavage site in the SARS virus, which they found in exactly the same location as in IBV.

Viruses often access cells by binding to receptors on the cell's surface, but unfamiliar receptors provide barriers. However, small changes in the second cleavage site may allow coronaviruses to bypass receptors and gain entry into many cells, including those of new species. The findings provide researchers with a new context to identify virulent disease strains and could possibly lead to developing treatments.

"We can now make predictions based on cleavage sites about new viruses that might come about," said Gary Whittaker, associate professor of virology at Cornell's College of Veterinary Medicine and the paper's senior author. "SARS appeared and then went away, but it is only a matter of time before similar viruses make that leap [to spread and jump species]."

While changes in the first cleavage site can affect a virus's ability to infect, the study reports that changes in the second site are always necessary for increased virulence. Whittaker believes that coronaviruses may have begun with just one cleavage site but then evolved the second one.

The researchers also report that their findings have led to new insights into such animal coronaviruses as feline infectious peritonitis (FIP), the most infectious disease in cats and the feline equivalent of SARS. As expected, the FIP virus's ability to infect cells is dictated by the same two cleavage sites, and studying FIP may contribute insights into SARS, since cats are vectors in both diseases. During the 2003 SARS outbreak, cats in a Hong Kong hotel helped transmit the disease between humans.

Provided by Cornell University (news : web)

Related Stories

Recommended for you

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.