New strategy improves stem cell recruitment, heart function and survival after heart injury

April 2, 2009

A new study in mice shows that a dual therapy can lead to generation of new blood vessels and improved cardiac function following a heart attack. The research, published by Cell Press in the April 3rd issue of the journal Cell Stem Cell, provides an explanation for the ineffectiveness of current stem-cell-mobilizing therapies and may drive design of future regenerative therapies for the heart.

Stem-cell-based therapies are an attractive option for the treatment of heart damage after a , also known as myocardial infarction (MI). However, although animal studies using derived from the bone marrow have elicited some improvement in cardiac function, human trials have not been as successful. "Modern approaches have to focus on the process of cardiac homing to improve the clinical outcome of stem cell therapies," explains senior study author, Dr. Wolfgang-Michael Franz from Ludwig-Maximilians University.

The stromal-cell-derived factor, type I (SDF-1) is the main chemical that guides stem cells to home in on damaged heart tissue. Because SDF-1 is inactivated by CD26/dipeptidylpeptidase IV (DPP-IV), endogenous stem cell localization to the heart is not optimal. The researchers used genetic or pharmacologic inhibitors of CD26/DPP-IV to slow degradation of SDF-1 in mice with surgically induced MI. They also treated the mice with granulocyte colony stimulating factor (GCSF), a commonly used drug that mobilizes multiple stem cell populations from the bone marrow to the blood.

The researchers found that genetic or pharmacologic inhibition of CD26/DPP-IV combined with G-CSF treatment decreased DPP-IV and stabilized activated SDF-1 in the heart, thereby enhancing the recruitment of circulating blood forming precursor cells, or EPCs (endothelial progenitors) to this organ. Further, the combined treatment increased formation of new blood vessels and improved both survival and cardiac function after MI.

The results represent the first experimental evidence that inhibition of DPP-IV combined with G-CSF enhances cardiovascular regeneration. "Our findings may contribute essential new aspects for design of future stem cell trials, since the key issue of all therapeutic stem cell approaches emerges to be the process of cardiac homing," says Dr. Franz. "We propose the use of combined DPP-IV inhibition and G-CSF application as a new therapeutic concept for future stem cell trials."

Source: Cell Press (news : web)

Related Stories

Recommended for you

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.