Chronic infection now clearly tied to immune-system protein (w/Video)

May 14, 2009,

A new study finds the cross-talk between 'killer T-cells' and 'helper T-cells' can only happen in the presence of interleukin-21, a powerful immune-system protein. UAB researchers say if interleukin-21 is missing, the immune system's anti-viral efforts fail. The study mice were treated for lymphocytic choriomeningitis.

The reason deadly infections like human immunodeficiency virus (HIV) and hepatitis C never go away is because these viruses disarm the body's defense system. Researchers at the University of Alabama at Birmingham (UAB) have discovered that a key immunity must be present for this defense system to have a chance against chronic infection.

Research up to now has tried but failed to decipher the cross-talk between 'killer T-cells' and 'helper T-cells' in the fight against viruses. The new UAB study finds this cross-talk can only happen in the presence of interleukin-21, a powerful . If interleukin-21 is missing for whatever reason, then the immune system's anti-viral efforts fail, said Allan Zajac, Ph.D., an associate professor in UAB's Department of Microbiology and lead author on the study.

Cross-talk between specific T-cells needs interleukin-21 to be effective, says Allan Zajac, Ph.D., an associate professor in the UAB Department of Microbiology. He is the lead author on a Science study. Credit: UAB

The findings are published in the journal Science through its service.

"Adding interleukin-21 back in stimulates the immune response and controls the infection," Zajac said. "We demonstrate that the loss of this protein prevents the control of the infection and diminishes the function of the killer T-cells, specifically ."

The study mice were treated for lymphocytic choriomeningitis, a viral infection of the membranes surrounding the brain and spinal cord. Measurements were taken for two types of T-cells, CD4 and CD8 T-cells, before and after the mice were treated with interleuikin-21.

"Interleukin-21 served as the key messenger between the T-cells, whereas before we didn't know exactly how the two types of cells communicated with each other," Zajac said. The CD4 T-cells help the immune system do its job by boosting CD8 T-cells' ability to fight and kill viruses.

Source: University of Alabama at Birmingham (news : web)

Related Stories

Recommended for you

Iron triggers dangerous infection in lung transplant patients, study finds

February 21, 2018
Researchers at the Stanford University School of Medicine have identified elevated tissue iron as a risk factor for life-threatening fungal infections in lung transplant recipients.

Neuroimaging reveals lasting brain deficits in iron-deficient piglets

February 21, 2018
Iron deficiency in the first four weeks of a piglet's life - equivalent to roughly four months in a human infant - impairs the development of key brain structures, scientists report. The abnormalities remain even after weeks ...

Products derived from plants offer potential as dual-targeting agents for experimental cerebral malaria

February 21, 2018
Malaria, a life-threatening disease usually caused when parasites from the Plasmodium family enter the bloodstream of a person bitten by a parasite-carrying mosquito, is a severe health threat globally, with 200 to 300 million ...

Scientists in Germany improve malaria drug production

February 21, 2018
Scientists in Germany who developed a new way to make a key malaria drug several years ago said Wednesday they have come up with a technique to make the process even more efficient, which should increase global access and ...

Early results from clinical trials not all they're cracked up to be, shows new research

February 21, 2018
When people are suffering from a chronic medical condition, they may place their hope on treatments in clinical trials that show early positive results. However, these results may be grossly exaggerated in more than 1 in ...

Clues to obesity's roots found in brain's quality control process

February 20, 2018
Deep in the middle of our heads lies a tiny nub of nerve cells that play a key role in how hungry we feel, how much we eat, and how much weight we gain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.