Embryo's heartbeat drives blood stem cell formation

May 13, 2009,
In this fluorescent image of a zebrafish embryo, endothelial cells (blood vessels) are labeled green and erythrocytes (red blood cells) are labeled red and imaged by confocal microscopy. This embryo was exposed to SNAP, which enhanced NO production, increased blood flow and elevated blood stem cell formation. In the picture, the red "lines" are red blood cells flowing through the large vessels (like the aorta where the stem cells are formed) and heart in a live embryo. Image courtesy of Wolfram Goessling and Trista North

(PhysOrg.com) -- Biologists have long wondered why the embryonic heart begins beating so early, before the tissues actually need to be infused with blood. Two groups of researchers from Children's Hospital Boston, Brigham and Women's Hospital, and the Harvard Stem Cell Institute (HSCI) -- presenting multiple lines of evidence from zebrafish, mice and mouse embryonic stem cells -- provide an intriguing answer: A beating heart and blood flow are necessary for development of the blood system, which relies on mechanical stresses to cue its formation.

Their studies, published online by the journals Cell and Nature, respectively, on May 13, together offer clues that may help in treating blood diseases such as leukemia, immune deficiency and sickle , suggesting new ways scientists can make the types of blood cells a patient needs. This would help patients who require marrow or cord blood transplants, who do not have a perfect donor match.

One team, led by Leonard Zon, MD, of the Division of Hematology/Oncology at Children's and Director of its Stem Cell research program, used zebrafish, whose transparent embryos allow direct observation of embryonic development. Publishing in Cell, Zon and colleagues discovered that compounds that modulate blood flow had a potent impact on the expression of a master regulator of blood formation, known as Runx1, which is also a recognized marker for the blood stem cells that give rise to all the cell types in the blood system.

Confirming this observation, a strain of mutant embryos that lacked a heartbeat and blood circulation exhibited severely reduced numbers of blood stem cells. Further work showed that , whose production is increased in the presence of blood flow, is the key biochemical regulator: Increasing nitric oxide production restored blood stem cell production in the mutant fish embryos, while inhibiting nitric oxide production led to reduced stem cell number.

Zon and colleagues went on to demonstrate that nitric oxide production was coupled to the initiation of blood stem cell formation across vertebrate species. Suppression of nitric oxide production in mice, by either genetic or chemical means, similarly reduced the number of functional Runx1-expressing blood stem cells.

"Nitric oxide appears to be a critical signal to start the process of blood stem cell production," says Zon, who is also affiliated with the HSCI. "This finding connects the change in blood flow with the production of new blood cells."

The second team, publishing in Nature, was led by George Q. Daley, MD, PhD, director of the Stem Cell Transplantation Program at Children's Hospital Boston, and Guillermo García-Cardeña, director of the Laboratory for Systems Biology of the Center for Excellence in Vascular Biology at Brigham and Women's Hospital, along with scientists from the Indiana University School of Medicine. Intrigued by the appearance of blood progenitors in the wall of the developing aorta soon after the heart starts beating, they investigated the effects of mechanical stimulation on blood formation in cultured mouse .

They showed that shear stress -- the frictional force of fluid flow on the surface of cells lining the embryonic aorta -- increases the expression of master regulators of blood formation, including Runx1, and of genetic markers found in blood stem cells. Shear stress also increased formation of colonies of progenitor cells that give rise to specific lineages of blood cells (red cells, lymphocytes, etc.). These findings demonstrate that biomechanical forces promote blood formation.

Daley, García-Cardeña and colleagues also studied mouse embryos with a mutation that prevented initiation of the heartbeat. These embryos had a sharp reduction in progenitor blood cell colonies, along with reduced expression of genetic markers of blood stem cells. When specific cells from the mutant embryos were exposed in vitro to shear stress, markers of blood stem cells and numbers of blood cell colonies were restored.

Finally, the team showed that when nitric oxide production was inhibited, in both cell cultures and live mouse embryos, the effects of shear stress on blood progenitor colony formation were reduced.

"In learning how the heartbeat stimulates blood formation in embryos, we've taken a leap forward in understanding how to direct blood formation from in the petri dish," says Daley, who is also affiliated with the HSCI.

"These observations reveal an unexpected role for biomechanical forces in embryonic development," adds García-Cardeña. "Our work highlights a critical link between the formation of the cardiovascular and hematopoietic systems."

The authors of the two papers speculate that drugs that mimic the effects of embryonic blood flow on blood precursor cells, or molecules involved in nitric oxide signaling, might be therapeutically beneficial for patients with blood diseases. For example, nitric oxide could be used to grow and expand stem cells either in the culture dish or in patients after transplantation.

Source: Children's Hospital Boston (news : web)

Related Stories

Recommended for you

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

July 18, 2018
Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes ...

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.