Estrogen controls how the brain processes sound

May 5, 2009,
Estrogen controls how the brain processes sound
This is Liisa Tremere, Jin Jeong, and Raphael Pinaud. Credit: University of Rochester

Scientists at the University of Rochester have discovered that the hormone estrogen plays a pivotal role in how the brain processes sounds.

The findings, published in today's issue of The Journal of Neuroscience, show for the first time that a sex hormone can directly affect auditory function, and point toward the possibility that estrogen controls other types of sensory processing as well. Understanding how estrogen changes the brain's response to sound, say the authors, might open the door to new ways of treating hearing deficiencies.

"We've discovered estrogen doing something totally unexpected," says Raphael Pinaud, assistant professor of brain and cognitive sciences at the University of Rochester and lead author of the study. "We show that estrogen plays a central role in how the brain extracts and interprets auditory information. It does this on a scale of milliseconds in neurons, as opposed to days, months or even years in which estrogen is more commonly known to affect an organism."

Previous studies have hinted at a connection between estrogen and hearing in women who have low estrogen, such as often occurs after menopause, says Pinaud. No one understood, however, that estrogen was playing such a direct role in determining auditory functions in the brain, he says. "Now it is clear that estrogen is a key molecule carrying brain signals, and that the right balance of hormone levels in men and women is important for reasons beyond its role as a sex hormone," says Pinaud.

Pinaud, along with Liisa Tremere, a research assistant professor of brain and cognitive sciences, and Jin Jeong, a postdoctoral fellow in Pinaud's laboratory, demonstrated that increasing estrogen levels in that process auditory information caused heightened sensitivity of sound-processing neurons, which encoded more complex and subtle features of the sound stimulus. Perhaps more surprising, says Pinaud, is that by blocking either the actions of estrogen directly, or preventing brain cells from producing estrogen within auditory centers, the signaling that is necessary for the brain to process sounds essentially shuts down. Pinaud's team also shows that estrogen is required to activate genes that instruct the to lay down memories of those sounds.

"It turns out that estrogen plays a dual role," says Pinaud. "It modulates the gain of auditory neurons instantaneously, and it initiates cellular processes that activate genes that are involved in learning and memory formation."

Pinaud and his group stumbled upon these findings while investigating how estrogen may help change neuronal circuits to form memories of familiar songs in a type of bird typically used to understand the biology of vocal communication. "Based on our findings we must now see estrogen as a central regulator of hearing," he says. "It both determines how carefully a sound must be processed, and activates intracellular processes that occur deep within the cell to form memories of sound experiences."

Pinaud and his team will continue their work investigating how neurons adapt their functionality when encountering new sensory information and how these changes may ultimately enable the formation of memories. They also will continue exploring the specific mechanisms by which estrogen might impact these processes.

"While we are currently conducting further experiments to confirm it, we believe that our findings extrapolate to other sensory systems and vertebrate species," says Pinaud. "If this is the case, we are on the way to showing that is a key molecule for processing information from all the senses."

Source: University of Rochester (news : web)

Related Stories

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.