Researchers discover genetic risk factor for testicular cancer

May 31, 2009

Researchers at the University of Pennsylvania School of Medicine have uncovered variation around two genes that are associated with an increased risk of testicular cancer. Testicular cancer is the most common cancer among young men, and its incidence among non-Hispanic Caucasian men has doubled in the last 40 years -- it now affects seven out of 100,000 white men in the United States each year. The discovery, published in the May 31, 2009 online issue of Nature Genetics, is the first step toward understanding which men are at high risk of disease.

"Despite being quite heritable, there really have not been any clear genetic risk factor that can account for most cases of ," says Katherine L. Nathanson, MD, an assistant professor of Medicine and a specialist in medical genetics at the Abramson Cancer Center. "These variants are the first striking genetic risk factors found for this disease to date."

Nathanson and co-author Peter A. Kanetsky, PhD, MPH, an assistant professor of Epidemiology, found that men who have two copies of the common version of the c-KIT (KITLG) gene have a 4.5-fold higher risk of testicular cancer than men who have two copies of the less common or minor version of the gene. Additionally, men with two copies of the common version of variants next to another gene, sprouty 4 (SPRY4), have a 1.48-fold higher risk than men with two copies of the less common version of the gene.

While researchers suspect environmental exposures may play a part in the growing incidence, they now know that an individual's genes also play a major role in disease susceptibility.

"This finding is quite different than those observed in many other genome-wide association studies," Nathanson says. "In most studies, the increased risk of disease is associated with the less common variant of the gene. In this case, it is the more common variant in that is associated with risk. If you carry two copies of the less common variant you are probably at incredibly low risk."

Additionally, the magnitude of the risk associated with the KITLG is much larger than has been found in similar studies of other adult cancers, including breast, colon, and prostate cancer. In those diseases, individual genes increase a person's risk by 10 to 25 percent, whereas the KITLG gene is associated with a 300 percent increase in risk for testicular cancer.

"Our observed strong association is intriguing and may reflect the impact of the genetic effect of KITLG," Kanetsky says. "However, since the prevalence of the common variant is so high, it may also reflect other underlying factors required in conjunction with KITLG for disease development. This remains to be determined."

Only a small proportion of men who carry the high-risk alleles will develop the disease. The key now, the researchers say, is to find out what modifies the genetic risks and pushes one individual toward cancer while another remains disease-free. By using the newly-discovered genetic risk factors as a lens, Nathanson and Kanetsky believe they may now be able to reveal critical environmental factors that would otherwise be lost in cloud of confounding information.

"We are very interested in how genes and environmental factors work together to increase one's risk," Nathanson says. "Now that we know something about the genetics, we hope to now build a better model of who is at risk by looking at gene-environment interactions."

Additionally, the new findings may begin to explain why white men are more often diagnosed with testicular cancer than African American men. KITLG is involved in pigmentation -- and the version of this gene associated with testicular cancer is common in the white population but much less common in the black population.

Finally, Nathanson says the findings show that previous models of testicular cancer formation are correct and underscore why with testicular cancer may also have fertility problems. "Researchers have postulated testicular cancer was a disorder of germ cell development or maturation, and they were right," she says. "The KITLG gene is critical for germ cell development and maturation."

Source: University of Pennsylvania School of Medicine (news : web)

Related Stories

Recommended for you

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

Twin study finds genetics affects where children look, shaping mental development

November 9, 2017
A new study co-led by Indiana University that tracked the eye movement of twins finds that genetics plays a strong role in how people attend to their environment.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet May 31, 2009
Environmental effects definately play a part! This area MUST be kept COOL! "Jock Straps" are causative!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.