Investigating a sometimes-faulty protein's role in brain links

May 5, 2009 by Deborah Halber

( -- Researchers at MIT's Picower Institute for Learning and Memory have shed light on how a protein implicated in cognitive disorders maintains and regulates brain cell structures that are key to learning and memory.

The work could lead to new treatments for autism, mental retardation and , which researchers believe are tied to abnormalities in synapses, the junctures through which neurons communicate.

"Increase in the size of synapses and are closely linked," said Mariko Hayashi, a Picower Institute research affiliate and co-author a new study about the work that appeared in a recent issue of the journal Cell. "Synapses get larger when we learn something and smaller when we forget something or unused connections are pruned. This happens in infants' growing brains and in learning and memory during adulthood. "

The study shows how two proteins -- named Shank and Homer -- work together to form a structural platform that allows other critical proteins to link to it like Legos, changing the active neurons' synapses.

Getting the message

When one neuron sends a signal to another neuron through chemical messages called neurotransmitters, receptors on the target membrane receive the signal. Shank and Homer help the receiving neuron get the message by interacting with a phalanx of receptors -- a kind of central switchboard for synaptic transmissions -- called the postsynaptic density (PSD).

Researchers hope that elucidating the little-understood structure and composition of the PSD will shed light on synaptic plasticity, the brain's ability to change, learn and remember.

Researchers are particularly interested in Shank because the protein is disrupted in a small proportion of autistic individuals.

"If a protein is missing or not working correctly, then the network structure is not formed the way it's supposed to be and occur. A striking example is in some cases of , Shank has a mutation," Hayashi said. "Potentially, we may be able to manipulate the function of Shank in the brain and cure the disease."

Homer and Shank, the MIT researchers found, latch onto each other to form a solid structure other proteins can bind to. This helps explain how PSDs and spines get bigger when learning and memory occur, and could lead to new therapies that boost the size and integrity of these tiny complexes.

Specifically, Hayashi and colleagues from RIKEN Brain Science Institute, Brookhaven National Laboratory, University of Milano and New York University found that Homer forms a dumbbell-shaped structure that binds to two Shank molecules at each end. "We showed through electron microscope analysis that these two proteins form a mesh-like matrix structure," Hayashi said.

During brain development and learning and memory, "it is highly likely that Homer and Shank assemble or disassemble to change the shape of the PSD," Hayashi said.

This helps explain how the size of synapses and the number of receptors increase when and occur, and could lead to new therapies that control the size and integrity of the PSD.

Provided by Massachusetts Institute of Technology (news : web)

Related Stories

Recommended for you

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.